Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Journal Article

The Impact of Diesel and Biodiesel Fuel Composition on a Euro V HSDI Engine with Advanced DPNR Emissions Control

2009-06-15
2009-01-1903
In an effort to reduce CO2 emissions, governments are increasingly mandating the use of various levels of biofuels. While this is strongly supported in principle within the energy and transportation industries, the impact of these mandates on the transport stock’s CO2 emissions and overall operating efficiency has yet to be fully explored. This paper provides information on studies to assess biodiesel influences and effects on engine performance, driveability, emissions and fuel consumption on state-of-the-art Euro IV compliant Toyota Avensis D4-D vehicles with DPNR aftertreatment systems. Two fuel matrices (Phases 1 & 2) were designed to look at the impact of fuel composition on vehicle operation using a wide range of critical parameters such as cetane number, density, distillation and biofuel (FAME) level and type, which can be found within the current global range of Diesel fuel qualities.
Technical Paper

Study of TWC in NOx Adsorber Catalyst System for Gasoline Direct Injection Engine

2001-03-05
2001-01-1300
Extensive research and development has been performed to develop the NOx-adsorber catalytic system, which would make Mitsubishi vehicles powered by the gasoline direct-injection (GDI™) engines comply with European Stage 4 emissions regulations. This NOx-adsorber catalytic system is a three-brick configuration, consisting of a three-way catalyst in the front (the front catalyst) and the rear catalytic converter, composed of a new NOx-adsorber catalyst and a conventional three-way catalyst (TWC). In the present research work, a special effort has been made to define the required performance of the front catalyst, particularly with HC reduction efficiency at the cold start, the steady-state leaner A/F and the transient phase of the A/F from leaner to stoichiometric. For HC reduction, it has been found that platinum (Pt) had the highest HC efficiency.
Technical Paper

New Low Cost and High Performance Catalyst-Single Layer Pd/Rh Catalyst Development

1998-02-23
980667
In order to meet recent and future stringent hydrocarbon emission regulations of passenger cars, the use of Pd-containing catalysts is of growing interest. This is especially true for Pd/Rh and Pt/Pd/Rh catalysts. To optimize the function of the individual precious metals, most high-performance catalysts have a double layer configuration. This double layer avoids undesired interactions between Pd and Rh after reacting with exhaust gas at a high temperature level. Of course, these double layer technologies lead to a more complex capacity utilization coating process during the manufacture of the catalyst. The present work summarizes the results of a research program targeting the development of a high-performance single layer Pd/Rh catalyst technology. The starting point was the functional improvement of Pd and Rh only catalysts then subsequently combining the best of these technologies.
Technical Paper

The Role of Zirconium in Novel Three-Way Catalysts

1997-02-24
970465
Zirconium dioxide (zirconia) is a well-known material often being a major component in the washcoat systems of three-way catalysts (TWC) and diesel oxidation catalysts. One important characteristic of zirconia containing washcoats is an improved aging stability which is required to meet the more and more stringent emission standards. In the last few years the utilization of zirconia became even more important - especially for high sophisticated three-way washcoat systems. This was due to the development of high temperature stable oxygen storage components, containing cerium dioxide (ceria) in combination with different other oxides - one very promising candidate being zirconia. In the present work the results of a research program are discussed, focusing on the influence of zirconia in combination with ceria and additional rare earth promoters on the stability of the oxygen storage characteristics.
X