Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Optimization of Suspension and Steering Systems of an Electric All-Terrain Vehicle (e-ATV) for Improving Vehicle Performance

2024-02-23
2023-01-5159
The Baja Electrical All-Terrain Vehicle eATV is a versatile off-road vehicle designed to tackle challenging terrains and endure extreme conditions. Suspension system in a car connects the chassis to its wheels and it comprises of a system of springs, dampers and linkages. Independent suspension systems typically offer better handling and ride quality. This paper focuses on the optimization of the eATV’s suspension and steering systems to enhance its performance, stability, and maneuverability. For explanation purpose the design methodology that has been chosen for the suspension system of an all-terrain vehicle. A double wishbone independent suspension is designed for the front half, and an H-arm independent suspension is designed for the rear half. The steering system uses a Rack & Pinion gearbox along with this Ackerman geometry being used for the steering assembly. Theoretical values were validated with the help of ‘Lotus Shark’ software.
Technical Paper

Using the Hybrid FE-SEA Model of a Trimmed Full Vehicle to Reduce Structure Borne Noise from 200Hz to 1kHz

2011-01-19
2011-26-0020
The Hybrid FE-SEA method has been used to create fast/efficient model of structure-borne noise in a fully trimmed vehicle from 200Hz to 1kHz. A joint paper is presented which highlights the method and modelling process along with extensive validation results. This paper describes the use of the model to analyze structure borne noise in the full vehicle, design and evaluate the impact of counter-measures. One of the key attributes of the Hybrid FE-SEA method is the ability to predict noise transfer paths in the vehicle. First, results from a Noise Path Analysis are used to identify key contributors to interior noise in the 200Hz-1kHz frequency range. Next potential design strategies for reducing interior noise are introduced along with implications on the model. Finally, sample prediction results illustrating the impact of design changes on interior noise levels are shown along with preliminary experimental validation results.
X