Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Development of a Hydrophilic, Antimicrobial Coating for Condensing Heat Exchangers

1997-07-01
972408
Condensing heat exchangers (CHX) are used in many applications, including space life support systems, to control temperature and humidity. Temperature control is achieved by transfer of the heat load to a circulating coolant. Simultaneously, humidity control is provided by cooling the air below its dew point, and separating the condensed water from the gas flow. In space, the condensate does not drain from the heat exchanger because of the absence of gravity. To overcome this problem, slurping condensing heat exchangers have been developed that combine a hydrophilic coating on the air flow passages and an additional slurping section added to the air outlet of the heat exchanger to achieve efficient air-water separation. For short missions such as those typical for shuttle flights, microbial proliferation in the coatings has not been a major issue, despite the fact that the coatings are continuously moist and an ideal breeding ground for microbial species.
Technical Paper

Development of a Thermal Control System Dual-Membrane Gas Trap

1995-07-01
951461
The Internal thermal control system (ITCS) for the International Space Station Alpha (ISSA) employs a dual-membrane gas trap to remove and vent noncondensed gases entrained in the water-cooling loop. The removal of noncondensed gas bubbles is significant because the gases impede the performance of the centrifugal pump, interfere with the coolant flow, and affect instrumentation readings. The gas trap utilizes hydrophobic and hydrophilic membrane tube pairs to vent separated gases to ambient. Bench-top tests of the current configuration have demonstrated removal of nitrogen at concentrations up to 8 percent by volume at a 3000 lbm/hr water flow rate. Optimization studies to maximize the removal of noncondensed gases from the water-cooling loop with minimal pressure drop have been performed to determine the ideal membrane configuration. The flight test design uses one hydrophobic hollow fiber per membrane tube pair to minimize water vapor loss.
Technical Paper

Dual-Membrane Gas Trap for the Space Station Freedom Internal Thermal Control System

1993-07-01
932162
A gas trap is being developed for use in the internal thermal control system (ITCS) of Space Station Freedom. The function of the gas trap is to remove and vent noncondensed gases (NCG) that may be entrained in the ITCS water loop. Noncondensed gas bubbles in excessive concentrations can cause the performance of the centrifugal pump to degrade, block coolant flow in remote components, and cause inaccuracies in instrumentation readings. A design has been created utilizing polypropylene hydrophobic and nylon hydrophilic membranes. The hydrophobic membrane allows gas transfer from the water/gas mixture across the membrane to ambient, and blocks liquid flow at the expected ITCS pressure levels. The hydrophilic membrane permits ITCS water to flow through the membrane, and blocks noncondensed gas at the expected water pressure differential. The water leaving the hydrophilic membrane is degassed and exits from the gas trap.
Technical Paper

Long-Term Evaluation of a Hydrophilic, Antimicrobial Coating Developed for Condensing Heat Exchangers

1998-07-13
981619
A hydrophilic, antimicrobial coating has been developed for the condensing heat exchanger and filter assembly (CHXFA), part of the Environmental Control and Life Support System (ECLSS) of the Columbus Orbital Facility (COF), the European laboratory module of the International Space Station (ISS). Condensing heat exchangers (CHX) are used in many applications, including space life support systems, to control temperature and humidity. In space, condensate from the air does not drain from the heat exchanger because of the absence of gravity. To overcome this problem, slurping condensing heat exchangers have been developed which combine a hydrophilic coating on the air flow passages, and an additional slurping section added to the air outlet of the heat exchanger to achieve efficient air-water separation.
Technical Paper

Membrane-Based Bioprocessor for Life Support Wastewater Reclamation

1998-07-13
981611
Although bioprocessors have been successfully tested in ground test experiments as primary wastewater processors [1, 2 and 3], the transition required for operation of a bioprocessor in microgravity is complicated by the absence of gravity and buoyancy-driven convection. Gases are present in the wastewater bioprocessor from numerous sources including aeration, metabolic production and operation. This paper presents an innovative approach to the delivery of metabolically-required oxygen to a bioprocessor. A bioprocessor that provides oxygen delivery and bacterial support using membranes has been developed and tested during the past two years. Bench-top laboratory results have demonstrated that Total Organic Carbon (TOC) degradation above 95%, and nitrification above 80% can be maintained, while denitrification typically ranged between 5-25% in a membrane bioprocessor system (MBS).
X