Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Experimental Validation of 1-D Modelling Codes for a Pipe System Containing Area Discontinuities

1995-02-01
950276
This paper reports on the first phase of an experimental evaluation of four different methods for the mathematical modelling of unsteady gas flow in a pipe system containing an area discontinuity. The four methods under investigation are the non-homentropic method of characteristics, the two-step Lax-Wendroff method with flux corrected transport, the Harten-Lax-Leer upstream difference method and the GPB finite system method. The experimentation is conducted using the QUB SP (single-pulse) pressure wave generator consisting of a cylinder, connected via a sliding valve to a long duct. The pressure waves it creates closely mimic those to be found in i.c. engines. The initial cylinder pressure may be set to simulate either an induction or an exhaust process. Various ducts are attached to the pressure wave generator to simulate both sudden and gradual area changes. Each duct is sufficiently long as to permit pressure wave observation without superposition effects.
Technical Paper

Experimental Validation of a 1D Modelling Code for a Pipe Containing Gas of Varying Properties

1995-02-01
950275
This paper reports on the experimental evaluation of certain aspects of the mathematical modelling by the GPB method of pressure wave propagation through finite systems, of unsteady gas flow in engine ducting. The aspects under examination are the propagation of pressure waves through a pipe which contains gases of dissimilar properties. In this case the gases are carbon dioxide and air. The experimentation is conducted using the QUB SP (single pulse) pressure wave generator consisting of a cylinder, connected via a sliding valve to a long duct. The pressure waves it creates closely mimic those to be found in i.e. engines. The initial cylinder pressure may be set to simulate either an induction or an exhaust process, but the experiments reported here are of compression waves only. The duct attached to the pressure wave generator is a straight pipe. The cylinder and part of the pipe are filled with carbon dioxide and air.
Technical Paper

Experimental Evaluation of 1-D Computer Codes for the Simulation of Unsteady Gas Flow Through Engines - A First Phase

1994-09-01
941685
This paper reports on the first phase of an experimental evaluation of five different methods for the mathematical modelling of unsteady gas flow in engine ducting. The five methods under investigation are the homentropic method of characteristics, the non-homentropic method of characteristics, the two-step Lax-Wendroff method with flux corrected transport, the Harten-Lax-Leer upstream difference method and the Blair method of pressure wave propagation through finite spaces. A single cycle pressure wave generator consisting of a cylinder, connected via a sliding valve to a long duct, has been designed and built. The pressure waves it creates closely mimic those to be found in i.e. engines. The cylinder and the ducts of the device can be filled with any gas and at elevated temperatures. A perfect seal exists between the cylinder and the valve thus enabling mass- flow correlation. The initial cylinder pressure may be set to simulate an induction or an exhaust process.
X