Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Experimental and Numerical Analysis of Engine Gas Exchange, Combustion and Heat Transfer during Warm-Up

2008-06-23
2008-01-1653
This paper presents experimental and computational results obtained on an in line, six cylinder, naturally aspirated, gasoline engine. Steady state measurements were first collected for a wide range of cam and spark timings versus throttle position and engine speed at part and full load. Simulations were performed by using an engine thermo-fluid model. The model was validated with measured steady state air and fuel flow rates and indicated and brake mean effective pressures. The model provides satisfactory accuracy and demonstrates the ability of the approach to produce fairly accurate steady state maps of BMEP and BSFC. However, results show that three major areas still need development especially at low loads, namely combustion, heat transfer and friction modeling, impacting respectively on IMEP and FMEP computations. Satisfactory measurement of small IMEP and derivation of FMEP at low loads is also a major issue.
Technical Paper

Experimental and Numerical Study of an Air Assisted Fuel Injector for a D.I.S.I. Engine

2007-04-16
2007-01-1415
The transient behaviour of the fuel spray from an air assisted fuel injector has been investigated both numerically and experimentally in a Constant Volume Chamber (CVC) and an optical engine. This two phase injector is difficult to analyse numerically and experimentally because of the strong coupling between the gas and liquid phases. The gas driven atomization of liquid fuel involves liquid film formation, separation and break up and also liquid droplet coalescence, break up, splashing, bouncing, evaporation and collision. Furthermore, the liquid phase is the dominant phase in many regions within the injector. Experimental results are obtained by using Mie scattering, Laser Induced Fluorescence (LIF) and Laser Sheet Drop sizing (LSD) techniques. Computational results are obtained by using a mixed Lagrangian/Eulerian approach in a commercial Computational Fluid Dynamic (CFD) code.
X