Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Catalyst Improvements to Meet European Stage III and ULEV Emissions Criteria

1996-02-01
960799
This paper describes the use of advanced three-way catalysts to meet future European and California low emissions legislation. Firstly, it describes the performance of these catalysts tested using the European Stage II test cycle and contrasts their emissions performance over the proposed European Stage III test. The future legislation requires fast catalyst light-off for the low emissions standards to be achieved, therefore the performance of close-coupled catalysts was investigated. The close-coupled catalyst systems gave very low emissions. Space constraints often preclude the use of large volume close-coupled catalysts, and the combination of a small starter catalyst with an underfloor catalyst was tested. This gave performance levels better than the close-coupled configuration. The effect of reducing the underfloor catalyst volume is also described. The work was carried out on a 1.2 litre European Vehicle, the conclusions were verified on a 1.6 litre European vehicle.
Technical Paper

The Design of Flow-Through Diesel Oxidation Catalysts

1993-03-01
930130
Progress made in reducing engine-out particulate emissions has prompted a revival in the design of flow-through oxidation catalysts for diesel engine applications. Effort in this area has focused primarily in the area of SOF control for the further reduction of particulate emissions. The work reported here covers some of the catalyst design parameters important for SOF and gas phase pollutant control. This is illustrated with both laboratory reactor and engine evaluation data for several formulary and operating parameters. Platinum-based catalysts are shown to be generally the most active, but they require treatments or additives to reduce the inherently high activity of platinum for the oxidation of SO2 present in the exhaust. The effect of additives and their loading on the oxidation activity of Pt/alumina for HC, CO, SOF and SO2 oxidation is discussed in detail and additives are identified which reduce SO2 oxidation with minimal effect on HC, CO or SOF oxidation activity.
X