Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Empirical Study on the Correlation of Random Incidence Sound Absorption Results from Varying Reverberation Room Sizes

2007-05-15
2007-01-2380
Recent effort has focused on correlating random incidence absorption coefficients obtained in different sizes of reverberation rooms based on round robin testing of identical samples in a database driven approach. An alternate approach presented here is to correlate random incidence sound absorption coefficients among different reverberation rooms using an apparent linear relationship between sound absorption coefficients and a geometric property of the test samples. Linearity can be judged in relation to the uncertainty of each individual measurement. The study will encompass experimental work on three different sizes of reverberation rooms for both a single layer material and a multi-layered material. By examining the different sound absorption coefficient values from each size of room, as a function of geometric parameters, we illustrate the quantitative correlation that might be established between the different sizes reverberation rooms.
Technical Paper

Correlation of Hydraulic Circuit Dynamic Simulation and Vehicle

2000-03-06
2000-01-0811
Higher demands from automotive customers for quieter vehicles and the reduction of noise and vibration levels from major sources like the engine necessitate better performance of other sources of noise and vibrations in a vehicle. One of these sources that Original Equipment Manufacturers (OEM) demand making quieter is the power steering system. The pressure ripple generated by the power steering pump transfers to the fluid lines where it can generate objectionable noise and vibrations. This can become an excitation force to the structure of a vehicle or the steering gear and can become a source of discomfort to the vehicle occupants. Attenuation of the pressure ripple within the hose assembly can result in significant reduction in noise inside the vehicle. The NVH research team at the Fluid System Products of Dana Corporation has developed “Dana's Virtual Test Rig (DVTR™),” - a hydraulic system simulation software.
X