Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of a Diesel Particulate Filter Burner Control System for Active Trap Regeneration

2007-04-16
2007-01-1064
This paper outlines the development of a diesel fuel burner for Diesel Particulate Filter (DPF) regeneration. The burner utilizes the application of a dual featured ignition system that may enable a burner system to be more cost effective, reliable, and efficient than other burners or Diesel Oxidation Catalysts (DOC). The ignition system incorporates high-energy ignition and ion sensing into a single controller. These two features provide many benefits for burner applications. The high-energy ignition provides enhanced light-off characteristics while simultaneously cleaning the electrode surfaces. Ion sensing allows precise flame control through high-speed ignition and flameout feedback. Initial data has already confirmed many of these anticipated benefits.
Technical Paper

Development of a Floating-Liner Engine for Improving the Mechanical Efficiency of High Performance Engines

2006-12-05
2006-01-3636
Engine friction typically accounts for 10 - 20 % of the power output of an engine, and friction in the power cylinder assembly is responsible for 50 % or more of the total engine friction. Hence, improvements to this assembly are critical for maximizing mechanical efficiency in high-performance and race engines. Many strategies have been developed and are currently being employed with the intent of reducing engine friction and extracting additional engine power. However, quantitative proof of their effectiveness has been very limited. This paper discusses the design and development of a research grade ‘floating-liner’ engine for measuring the friction forces within the power cylinder assembly of a high-speed internal combustion engine.
X