Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

A Review of Sampling Condition Effects on Polynuclear Aromatic Hydrocarbons (PNA) from Heavy-Duty Diesel Engines

1985-10-01
852081
Reports published by Gulf R&D Co. and Battelle Columbus Laboratories under contract to the Coordinating Research Council's APRAC project group CAPE-24 were reviewed. Both studies failed to verify the accuracy of polynuclear aromatic hydrocarbon (PNA) emission measurements from heavy-duty diesel engines. Thermal decomposition and chemical reactions of the PNA occur in raw exhaust at temperatures above 500°F. Therefore, pipes which transfer exhaust to dilution tunnels can significantly reduce the apparent emission values. Dilution tunnel conditions have comparatively little effect on PNA measurements. However, vapor traps are required behind particle filters to assure complete collection of 4-ring PNA compounds. Guidelines are presented for controlling and testing sampling systems for accurate PNA emission measurements.
Technical Paper

ADVANCED SEPARATION OF PLASTICS FROM SHREDDER RESIDUE

2004-03-08
2004-01-0469
The United States Council of Automotive Research (USCAR) under the Vehicle Recycling Partnership (VRP) along with our collaborators Argonne National Laboratory (ANL), American Plastic Council (APC) and the Association of Plastic Manufactures in Europe (APME) has been conducting research on automated recovery of plastics from shredder residue. A Belgium company Salyp NV located in Ypres, Belgium has been contracted by the VRP to demonstrate a recovery process that can separate several plastic types including polyurethane foam out of the shredder residue waste stream. One hundred metric tons of shredder residue was supplied from three different metal recycling companies (shredders) including a US metal recycler as well as two different European metal recyclers/shredders. This shredder residue was evaluated and processed by Salyp. This paper explains the separation processes along with processing efficiencies, material characterization, mass balances and the amount of plastics recovered.
Technical Paper

An Analysis of the Vehicle End-of-Life in the United States

1998-11-30
982213
This paper presents an analysis of the Vehicle End of Life (VEOL) trends in the United States based on the VEOL model developed by the Vehicle Recycling Partnership (VRP), a consortium between Chrysler Corporation, Ford Motor Company and General Motors. The model, developed interactively with the VRP by the Center for Environmental Quality (CEQ) at the Instituto Tecnológico y de Estudios Superiores de Monterrey (ITESM), accounts for the economic and the material transfer interactions of stakeholders involved in the VEOL process; the insurance valuation, salvage pool, dismantling, rebuilding, maintenance and repair, shredding, and landfilling [Bustani, et al., 1998]. The scenarios analyzed using the VEOL model consider regulations from Europe as well as the U.S. market factors and business policies.
Technical Paper

An Approach to Modeling the Vehicle End-of-Life Process

1998-02-01
980099
A descriptive analysis of the Vehicle End-of-Life (VEOL) process in the U.S. is presented. The material recovery process and the reuse of parts are discussed. A computer VEOL model will be presented which would ultimately be used to analyze the impact of specific regulations, markets factors, and/or business policies, on the recyclability of materials and the reuse of parts. The computer model includes several stages of the VEOL process, including vehicle sales, usage, and retirement; also the dismantling of the retired vehicle, shredding operations, parts and vehicle rebuilders, maintenance and repair. An example of the use of the VEOL computer model on material substitution is presented.
Technical Paper

Comparative Life Cycle Assessment of Plastic and Steel Vehicle Fuel Tanks

1998-11-30
982224
Federal standards that mandate improved fuel economy have resulted in the increased use of lightweight materials in automotive applications. However, the environmental burdens associated with a product extend well beyond the use phase. Life cycle assessment is the science of determining the environmental burdens associated with the entire life cycle of a given product from cradle-to-grave. This report documents the environmental burdens associated with every phase of the life cycle of two fuel tanks utilized in full-sized 1996 GM vans. These vans are manufactured in two configurations, one which utilizes a steel fuel tank, and the other a multi-layered plastic fuel tank consisting primarily of high density polyethylene (HDPE). This study was a collaborative effort between GM and the University of Michigan's National Pollution Prevention Center, which received funding from EPA's National Risk Management Research Laboratory.
Technical Paper

Life Cycle Inventory Study of the UltraLight Steel Auto Body - Advanced Vehicle Concepts Vehicle Product System

2003-10-27
2003-01-2838
A life cycle inventory (LCI) study evaluates the environmental performance of the ULSAB-AVC (UltraLight Steel Auto Body - Advanced Vehicle Concepts) vehicle product system. The LCI quantifies the inputs and outputs of each life cycle stage of the ULSAB-AVC PNGV-gas engine vehicle (998 kg) over the 193,000 km service lifetime of the vehicle. The use phase of the ULSAB-AVC PNGV-diesel engine variant (1031 kg) is also quantified. The data categories measured for each life cycle phase include resource and energy consumption, air and water pollutant emissions, and solid waste production. The ULSAB-AVC LCI study is based on the methods, model and data from the 1999 study by the United States Automotive Materials Partnership (USAMP), a consortium within the United States Council for Automotive Research. This model was modified to represent the ULSAB-AVC PNGV-gas engine vehicle for each life cycle phase as well as the use phase of the PNGV-diesel engine variant.
Technical Paper

Life Cycle Inventory of a Generic U.S. Family Sedan Overview of Results USCAR AMP Project

1998-11-30
982160
The United States Automotive Materials Partnership Life Cycle Assessment Special Topics Group (USAMP/LCA) has conducted a Life Cycle Inventory (LCI) using a suitable set of metrics to benchmark the environmental (not cost) performance of a generic vehicle, namely, the 1995 Intrepid/Lumina/Taurus. This benchmark will serve as a basis of comparison for environmental performance estimates of new and future vehicles (e.g. PNGV). The participants were Chrysler Corporation, Ford Motor Company, General Motors, The Aluminum Association, The American Iron and Steel Institute, and the American Plastic Council. The study was strictly a life cycle inventory. The approach was to quantify all suitable material and energy inputs and outputs, including air, water, and solid wastes. The inventory covered the entire life cycle; from raw material extraction from the earth, to material production, parts manufacture, vehicle assembly, use, maintenance, recovery/recycling, and disposal.
Technical Paper

Measurements of Unregulated Emissions from General Motors' Light-Duty Vehicles

1979-02-01
790694
Sampling and analysis methods for unregulated exhaust constituents are discussed. Emission results for more than fifteen exhaust constituents from both gasoline- and diesel-powered automobiles are presented. It is shown that the catalytic converter substantially lowers the emission rates of aldehydes, benzene, benzo(a)-pyrene, hydrogen cyanide, and nitrogen dioxide. However, under certain rich-malfunction conditions, small increases in hydrogen sulfide, carbonyl sulfide, hydrogen cyanide, and ammonia occur. Particulate emissions are the primary concern for diesels since other unregulated emissions occur at the same low levels as from gasoline-powered vehicles. It is concluded that although steady improvements in chemical analysis technology have led to the detection of more and more minor impurities in exhaust, none of these substances are emitted at concentrations that can be considered dangerous.
Technical Paper

SCREENING STUDY TO EVALUATE SHREDDER RESIDUE MATERIALS

2004-03-08
2004-01-0468
The Vehicle Recycling Partnership (VRP) initiated feasibility studies to evaluate the use of automated separation processes to recover plastics and polyurethane (PU) foams from shredder residue. One of the prevailing issues impeding the commercial success of these processes is contamination of the shredder materials. The contaminants include dirt, oils, glass, metal fines, polychlorinated biphenyls (PCBs) and heavy metals. The presence of PCBs and heavy metals was determined in a number of mixed plastics and PU foam samples separated using an automated separation process. An aqueous cleaning approach was investigated using various commercial surfactants to determine their effectiveness for removing oils, PCBs, and heavy metals. Mass balances of processed and cleaned materials were calculated to determine the cleaning efficiencies of the various surfactants.
Technical Paper

Stake Digester Process for HDPE Fuel Tank Recycling

2003-03-03
2003-01-1371
A research project to determine the feasibility of utilizing polyethylene post-consumer automotive fuel tanks as a source of raw material was funded by Visteon, ExxonMobil, and was conducted by Brooks Associates. Brooks Associates launched this project in the last quarter of 2000 to demonstrate the feasibility of utilizing high-density polyethylene (HDPE) post-consumer automotive fuel tanks in combination with wood fiber to create a new material suitable as an automotive substrate. The concept for the project was based on proven technology that processes wood into fiber utilizing steam explosion. The steam explosion process was commercialized to form wood fiber as a raw material for ‘Masonite’. The product of the explosion process has also been made into a mat for further processing. This mat process is generally referred to as the ‘air-lay’ process.
Technical Paper

USCAR U.S. Field Trial for Automotive Polymers Recycling

2003-03-03
2003-01-0645
The United States Field Trial was chartered by the United States Council for Automotive Research/Vehicle Recycling Partnership (USCAR/VRP) with the objective of evaluating the feasibility and viability of collecting and recycling automotive polymers from domestic End-of-Life Vehicles (ELVs). European concerns regarding vehicle abandonment risks, decreasing landfill capacity, and disposal practices have resulted in the legislated treatment of ELVs in Western Europe. The emergence of attendant material collection schemes promoting material recycling may not apply to the free-market economic conditions prevalent in North America vehicle recycling infrastructure. Although ELVs are among the most widely recycled consumer products, 15-25% of their total mass is currently discarded with no material recovery, although their residue, when permitted, is a preferred landfill day cover in some areas.
X