Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Application of a Fully Flexible Electro-Hydraulic Camless System to a Research SI Engine

2009-09-13
2009-24-0076
This paper presents the further development of an electro-hydraulic camless valve actuation system for internal combustion engines. The system (Hydraulic Valve Control - HVC) is an open loop device for engine valve fully flexible camless actuation. Valve timing and duration are controlled by a pilot stage governed by a solenoid, fast-acting, three-way valve. Valve lift is controlled by varying the oil pressure of the power stage. The system exploits an energy recovery working principle that plays a significant role in reducing the power demand of the whole valve train. In the present paper a new HVC actuator design is presented and its performances in terms of valve lift profile, repeatability and landing are discussed. Experimental data obtained by the application of the HVC system to a motored, single-cylinder research engine have been used to support the numerical evaluation of the potentialities of non-conventional valve actuation in engine part-load operation.
Technical Paper

A Computer Code for S.I. Engine Control and Powertrain Simulation

2000-03-06
2000-01-0938
A computer code oriented to S.I. engine control and powertrain simulation is presented. The model, developed in Matlab-Simulink® environment, predicts engine and driveline states, taking into account the dynamics of air and fuel flows into the intake manifold and the transient response of crankshaft, transmission gearing and vehicle. The model, derived from the code O.D.E.C.S. for the optimal design of engine control strategies now in use at Magneti Marelli, is suitable both for simulation analysis and to achieve optimal engine control strategies for minimum consumption with constraints on exhaust emissions and driveability via mathematical programming techniques. The model is structured as an object oriented modular framework and has been tested for simulating powertrain system and control performance with respect to any given transient and control strategy.
Technical Paper

Development and Validation of a Model for Mechanical Efficiency in a Spark Ignition Engine

1999-03-01
1999-01-0905
A set of models for the prediction of mechanical efficiency as function of the operating conditions for an automotive spark ignition engine is presented. The models are embedded in an integrated system of models with hierarchical structure for the analysis and the optimal design of engine control strategies. The validation analysis has been performed over a set of more than 400 steady-state operating conditions, where classical engine variables and pressure cycles were measured. Models with different functional structures have been tested; parameter values and indices of statistical significance have been determined via non-linear and step-wise regression techniques. The Neural Network approach (Multi Layer Perceptrons with Back-Propagation) has been also used to evaluate the feasibility of using such an approach for fast black-box modelization.
X