Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Mechatronic Solution for Electronic Turbocharger

2003-03-03
2003-01-0712
An innovative way of lowering engine fuel consumption is to reduce engine displacement. However, smaller engines featuring reduced swept volume typically exhibit insufficient torque at low engine speeds. Conventional exhaust turbochargers are not able to compensate for this behavior and additionally suffer from the familiar turbo lag. One possible solution may be an electrically assisted turbocharger, with a high-speed motor providing the extra boost at low engine speeds. A critical factor for the efficiency of the concept is the ratio of the electric motor torque and the rotational mass inertia of the rotor. Testbench evaluation shows acceleration times of 0.5 seconds to reach speeds up to 70,000 rpm. Typically, the electrical load of such systems goes up to 3 kW. Target motors are various types of electrically commutated motors such as BLDC, switched reluctance or induction motors.
Technical Paper

Mechatronic Solution for Motor Management

2002-03-04
2002-01-0473
A mechatronic approach to implementing a BLDC motor drive control system is described. The partitioning method used allows the motor power to be scaled from around 100 watts to 1 kilowatt. The chosen approach maps the required electronic functionality to different existing front-end technologies. By drawing on vast experience with back-end technologies, especially chip-on-chip assembly, it is possible to implement a system in a one-package solution. The advantages of each technology are used to achieve a cost-effective, space-saving solution.
Technical Paper

Automatic Code Generator for Automotive Configurable I/O System

2000-03-06
2000-01-0554
The increasing legal requirements for safety, emission reduction, fuel economy and onboard diagnostic systems are forcing the market to increase complexity. This complexity must not be a reason for slowing down the introduction of new systems. For efficiency, car manufacturers and system suppliers want to focus on their core competencies and leave the micro-controller complexity to silicon vendors. Competition forces system suppliers to jump to the most “function/cost” effective solution. For this reason it is very dangerous to move in the direction of specific solutions which require a large amount of effort to modify. Therefore the market goes in the direction of standards with clear interfaces. The approach presented overcomes these obstacles by introducing a Configurable I/O System (CIOS) layer. The CIOS encompasses basic software driver objects for engine management systems encapsulating the standard sensors and actuators.
X