Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Assessment of Residual Stress in T5 Treated 319 Aluminum Alloy Engine Blocks Using Neutron Diffraction

2016-04-05
2016-01-0353
Aluminum alloys have been replacing ferrous alloys in automotive applications to reduce the weight of vehicles. The engine block is a striking example of weight reduction, and is made of Al-Si-Cu-Mg (319 type) alloys. The wear resistance in the engine block is enabled by cast iron liners, and these liners introduce tensile residual stress due to a thermo-mechanical mismatch. Typically, an artificial aging treatment effectively reduces residual stress. In this study, neutron diffraction was used to measure the residual stress profiles along the cylinder bridge of a T5 treated 319 aluminum alloy engine block. Results indicated high tensile residual stresses (200-300 MPa) in the hoop and axial orientation at depths of 50-60 mm below the head deck. The high residual stresses were likely due to a combination of minimal stress relief during artificial aging and stress development during post process cooling.
Journal Article

Residual Stress Mapping along the Cylinder Bores of Al Alloy Engine Blocks Subjected to Production Solution Heat Treatment Schedule

2014-04-01
2014-01-0837
The development of an optimized heat treatment schedule, with the aim of maximizing strength and relieving tensile residual stress, is important to prevent in-service cylinder distortion in Al alloy engine blocks containing cast-in gray iron liners. However, to effectively optimize the engine block heat treatment schedule, the current solutionizing parameters must be analyzed and compared to the as-cast condition to establish a baseline for residual stress relief. In this study, neutron diffraction was carried out to measure the residual stress along the aluminum cylinder bridge following solution heat treatment. The stresses were measured in the hoop, radial and axial orientations and compared to a previous measured as-cast (TSR) engine block. The results suggest that solution heat treatment using the current production parameters partially relieved tensile residual stress in the Al cylinder bridge, with stress relief being more effective near the bottom of the cylinder.
Journal Article

Analysis of Residual Strain Profiles in Distorted Aluminum Engine Blocks by Neutron Diffraction

2013-04-08
2013-01-0171
In recent years, light weight components have been an area of significant importance in automotive design. This has led to the replacement of steel and cast iron with aluminum alloys for many automotive components. For instance, Al-Si alloys have successfully replaced nodular and gray cast iron in the production of large automotive components such as engine blocks. However, excessive residual strain along the cylinder bores of these engine blocks may result in cylinder distortion during engine operation. Therefore, in this study, neutron diffraction was used to evaluate residual strain along the aluminum cylinder bridge and the gray cast iron liners of distorted and undistorted engine blocks. The strains were measured in the hoop, radial, and axial orientations. The results suggest that the residual strain along the aluminum cylinder bridge of the distorted engine block was tensile for all three measured components.
Journal Article

Analysis of Residual Stress Profiles in the Cylinder Web Region of an As-Cast V6 Al Engine Block with Cast-In Fe Liners Using Neutron Diffraction

2011-04-12
2011-01-0036
Continuous efforts to develop a lightweight alloy suitable for the most demanding applications in automotive industry resulted in a number of advanced aluminum (Al) and magnesium alloys and manufacturing routes. One example of this is the application of 319 Al alloy for production of 3.6L V6 gasoline engine blocks. Aluminum is sand cast around Fe-liner cylinder inserts, prior to undergoing the T7 heat treatment process. One of the critical factors determining the quality of the final product is the type, level, and profile of residual stresses along the Fe liners (or extent of liner distortion) that are always present in a cast component. In this study, neutron diffraction was used to characterize residual stresses along the Al and the Fe liners in the web region of the cast engine block. The strains were measured both in Al and Fe in hoop, radial, and axial orientations. The stresses were subsequently determined using generalized Hooke's law.
Technical Paper

Retrofitting to Achieve Automated Assembly and Burr-Less Drilling

1998-09-15
982155
Throughout the years aircraft producers have struggled with the elusive goal of “Automated Assembly of aircraft structures”. This goal has been attempted in conjunction with and tempered by the basic reality of current aircraft manufacturing methodology. Automated systems have been used for years, but have almost exclusively been based on time tested technology, the derivation of which is “C Frame” riveters. There have been attempts to automatically move the panels, skins and bulkheads using CNC equipment. There have been other attempts to move the riveting head itself; however the basic premise has been a two sided fastener. There are many new technologies attempting to modify the basic paradigm, aircraft are for the most part held together by rivets. The art remains to a substantial degree unchanged.
X