Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Austempered Ductile Iron Castings for Chassis Applications

2000-03-06
2000-01-1290
Austempered ductile iron (ADI) castings provide a unique combination of high strength and toughness coupled with excellent design flexibility for chassis applications. This paper describes the development of the upper control arm for the 1999 Ford Mustang Cobra as an austempered ductile iron casting. The full service development process used is described from initial design through finite element analysis (FEA), design verification, casting production, heat treatment, nondestructive evaluation and machining. To achieve significant weight savings, an austempered ductile iron casting was chosen for this application instead of an as-cast SAE J4341, Grade D4512 ductile iron casting or a steel forging. This is believed to be the first application of an austempered ductile iron casting for a safety critical, automotive chassis application.
Technical Paper

Influence of Crankshaft Material and Design on the NVH Characteristics of a Modern, Aluminum Block, V-6 Engine

1999-03-01
1999-01-1225
The NVH characteristics of a modern, aluminum block, V-6 engine were shown to be nearly equivalent when a cast ductile iron crankshaft with multi-mode damper was substituted for the production, forged steel crankshaft with conventional, single torsional mode damper. This result contradicts the traditional thinking that suggests forged steel crankshafts produce better NVH characteristics than ductile iron crankshafts. Also, a lightweight, cast ductile iron crankshaft with multi-mode damper showed only slightly inferior NVH characteristics than the production, forged steel crankshaft with single torsional mode damper. The substitution of cast ductile iron for forged steel can also result in significant cost and weight savings.
Technical Paper

Development and Application of Enhanced Compacted Graphite Iron for the Bedplate of the New Chrysler 4.7 Liter V-8 Engine

1999-03-01
1999-01-0325
For the new 4.7 L, V-8 engine, which was introduced in the all new 1999 Jeep Grand Cherokee, Chrysler product engineers found they needed a bedplate material that was significantly stronger and stiffer than gray iron to help meet engine weight requirements. The material also had to provide good NVH characteristics, be cost effective, and machinable. Intermet Corporation, the casting supplier, wanted a material that was significantly tougher than gray iron, would cast sound in complex sections, and which could be reliably produced on a cost effective basis. This paper presents an overview of the development, properties, casting practices, and engine validation of enhanced compacted graphite iron, a material specifically developed and tailored for the bedplate of the new 4.7 liter engine.
X