Refine Your Search

Search Results

Technical Paper

Thermochemical Calculations Regarding Fluoride Flux-Mg-Al2O3-Li Interactions in Aluminum Brazing

1997-05-19
971850
Analysis of the NOCOLOK™ aluminum brazing process is difficult because of the multiple reactions which can occur at high temperature between the components of this complex system: flux (KAIF4 and K3AIF6), oxides (principally Al2O3), and reactive alloying elements in the core or filler, such as Mg and Li. The “Mg-poisoning” phenomenon, in which the oxide removal properties of the flux are reduced, is a key concern of those using the NOCOLOK process. Thermochemical calculations demonstrate that an initial Mg content of 0.2%-0.4% coming into contact with the flux is sufficient to inhibit the desired oxide dissolution (i.e., the flux is “poisoned”). Based on thermodynamic calculations, the principal “poisoning” reaction appears to be: 3Mg (liq. soln.) + 3KAIF4 = 3MgF2 + K3AIF6 + 2AI (liq. soln.).
X