Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Comparing Experimental Data to Traumatic Brain Injury Finite Element Models

1999-10-10
99SC20
Validating a traumatic brain injury finite element model is often limited by a lack of extensive animal injury data that may be used to examine the conditions under which the model is accurate. Given that most published reports specify only general descriptions of injury, this study examined potential evaluation strategies and assessed the ability of a finite element model to simulate the general descriptions of injury in an animal model. The results of this study showed that 1) the results from a simplified finite element model could estimate trends that were similar to the injury patterns observed in a set of animal experiments, 2) a parameter (Z parameter), which quantified the comparison process between computational and animal data, estimated trends that would help in the model evaluation process, and 3) a more complete evaluation process would occur if multiple testing methods were included in the evaluation procedure.
Technical Paper

Finite Element Modeling Approaches for Predicting Injury in an Experimental Model of Severe Diffuse Axonal Injury

1998-11-02
983154
Traumatic brain injury finite element analyses have evolved from crude geometric representations of the skull and brain system into sophisticated models which take into account distinct anatomical features. However, two distinct finite element modeling approaches have evolved to account for the relative motion that occurs between the skull and cerebral cortex during traumatic brain injury. The first and most common approach assumes that the relative motion can be estimated by representing the cerebrospinal fluid inside the subarachnoid space as a low shear modulus, virtually incompressible solid. The second approach assumes that the relative motion can be approximated by defining a frictional interface between the cerebral cortex and dura mater. This study presents data from an experimental model of traumatic brain injury coupled with finite element analyses to evaluate the modeling approach's ability to predict specific forms of traumatic brain injury.
X