Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Elevated Temperature Modal Response and Delamination Detection in Carbon-Epoxy Beams

2016-12-21
2016-01-9082
Polymer matrix composites are increasingly adopted in aerospace and automotive industries due to their many attributes, such as their high strength to weight ratio, tailorability, and high fatigue and durability performance. However, these materials also have complex damage and failure mechanisms, such as delaminations, which can severely degrade their strength and fatigue performance. To effectively and safely use composite materials in primary structures, it is essential to assess composite damage response for development of accurate predictive models. Therefore, this study focuses on determining the response of damaged and undamaged carbon epoxy beams subjected to vibration loadings at elevated temperatures. The Hilbert-Huang Transform (HHT) technique is used to analyze the beams’ modal response. The HHT shows potential in identifying the nonlinear damaged response of the beams.
Technical Paper

Rapid Prototyping of Composite Aircraft Structures

1993-05-01
931219
The faculty, staff and students of the Raspet Flight Research Laboratory (RFRL) have developed a rapid prototyping capability in a series of research aircraft and unmanned aircraft development projects. There has been a steady change in the technologies used to accomplish these tasks at the RFRL. The most recent development has been the utilization of computer graphics and a 5-axis gantry robot router to accelerate the design, moldmaking and parts trimming tasks. The composite structure fabrication processes at the RFRL have evolved from wet-lay-up to autoclave cure. Currently, the feasibility of the stitched composite material preform and resin transfer molding process is being explored. The organizational structure of the RFRL rapid prototyping group has been found to be most important in accomplishing a vehicle development that is technically sound, safe, and reasonable in cost.
X