Refine Your Search

Search Results

Author:
Viewing 1 to 8 of 8
Technical Paper

HVAC Blower: a Steady State RANS Noise Prediction Method

2024-06-12
2024-01-2937
In an ever-transforming sector such as that of private road transport, major changes in the propulsion systems entail a change in the perception of the noise sources and the annoyance they cause. As compared to the scenario encountered in vehicles equipped with an internal combustion engine (ICE), in electrically propelled vehicles the heating, ventilation, and air conditioning (HVAC) system represents a more prominent source of noise affecting a car’s passenger cabin. By virtue of the quick turnaround, steady state Reynolds-averaged Navier Stokes (RANS)- based noise source models are a handy tool to predict the acoustic power generated by passenger car HVAC blowers. The study shows that the most eminent noise source type is the dipole source associated with fluctuating pressures on solid surfaces.
Technical Paper

Optimization of Compact Non-Fibrous Silencer for the Control of Compressor Noise

2016-06-15
2016-01-1818
The concept of IC engine downsizing is a well-adapted industry standard, enabling better fuel conversion efficiency and the reduction of tailpipe emissions. This is achieved by utilizing different type of superchargers. As a consequence, the additional charger noise emission, at the IC engine inlet, can become a problem. In order to address such problem, the authors of this work have recently proposed a novel dissipative silencer for effective and robust noise control of the compressor. Essentially, it realizes an optimal flow channel impedance, referred to as the Cremer impedance. This is achieved by means of a straight flow channel with a locally reacting wall consisting of air cavities covered by an acoustic resistance, e.g., a micro-perforated panel (MPP). In this paper, an improved optimization method of this silencer is presented. The classical Cremer impedance model is modified to account for mean flow dependence of the optimal wave number.
Technical Paper

Turbocharger Noise - Generation and Control

2014-11-04
2014-36-0802
An important part of modern engine design is the concept of downsizing where a key role is carried by the charging devices. These devices are effective aero-acoustic sources forming a coupled acoustic system with the connected flow-channel components. At KTH a unique test facility for determination of the complete acoustic Two-port for turbochargers has been built. Using this facility both the passive (transmission & reflection) as well as the active (sound generation) data for turbochargers can be measured at a given operating point. One important issue which has been studied in detail using this data is the coupling between the aerodynamic and acoustic fields close to “surge”. In addition, the control of compressor noise is an increasing concern. For instance heavy duty diesels and light duty engines with screw (roots) compressors can create strong charging harmonics well below 10 kHz. The standard noise control solution for these cases is to build a series of resonators.
Journal Article

A Compact Silencer for the Control of Compressor Noise

2014-06-30
2014-01-2060
Current trends for IC-engines are driving the development of more efficient engines with higher specific power. This is true for both light and heavy duty vehicles and has led to an increased use of super-charging. The super-charging can be both in the form of a single or multi-stage turbo-charger driven by exhaust gases, or via a directly driven compressor. In both cases a possible noise problem can be a strong Blade Passing Frequency (BPF) typically in the kHz range and above the plane wave range. In this paper a novel type of compact dissipative silencer developed especially to handle this type of problem is described and optimized. The silencer is based on a combination of a micro-perforated (MPP) tube backed by a locally reacting cavity. The combined impedance of micro-perforate and cavity is chosen to match the theoretical optimum known as the Cremer impedance at the mid-frequency in the frequency range of interest.
Technical Paper

Acoustical Methods for Investigating Turbocharger Flow Instabilities

2013-05-13
2013-01-1879
In order to increase the internal combustion engine efficiency turbocharging is today widely used. The trend, in modern engine technology, is towards higher boost pressures while keeping the combustion pressure raise relatively small. The turbocharger surge occurs if the pressure at the outlet of the compressor is greater than it can maintain, i.e., a reverse flow will be induced. In presence of such flow conditions instabilities will occur which can couple to incident acoustic (pressure) waves and amplify them. The main objective of the present work is to propose a novel method for investigation of turbocharger flow instabilities or surge precursors. The method is based on the determination of the acoustic two-port data. The active part of this data describes the sound generation and the passive part the scattering of sound. The scattering data will contain information about flow-acoustic interaction and amplification of sound that could occur close to surge.
Technical Paper

Acoustic Studies of Micro-Perforates for Small Engine Silencers

2012-10-23
2012-32-0107
To respond growingly strict environmental regulations the acousticians are challenging to develop novel types of silencing elements. There are different types of flow duct elements designed for silencing the pulsating gas flows into and out of fluid machines. The silencing effect is typically achieved by introducing acoustic reflection and absorption. In order to achieve a good absorption in a wide frequency band, various fibrous materials e.g. wools are typically implemented. However, the physical properties of such materials do not often remain constant during the lifetime of a silencer. As the fibers tend to relocate and can partly be blown out to surroundings, acoustical performance may deteriorate. Therefore, it is in great interest to avoid fibrous materials in the design of the flow duct silencing elements. The present work is focused on the modern type of absorptive acoustic element - a micro-perforated element.
Technical Paper

A Novel Design for Cruiser Type Motorcycle Silencer Based on Micro-Perforated Elements

2012-10-23
2012-32-0109
Regulations stipulating the design of motorcycle silencers are strict, especially when the unit incorporates fibrous absorbing materials. Therefore, innovative designs substituting such materials while still preserving acceptable level of characteristic sound are currently of interest. Micro perforated elements are innovative acoustic solutions, which silencing effect is based on the dissipation of the acoustic wave energy in a pattern of sub-millimeter apertures. Similarly to fibrous materials the micro-perforated materials have been proved to provide effective sound absorption in a wide frequency range. Additionally, the silencer is designed as a two-stage system that provides an optimal solution for a variety of exploitation conditions. In this paper a novel design for a cruiser type motorcycle silencer, based on micro-perforated elements, is presented.
Technical Paper

Acoustic Studies on Small Engine Silencer Elements

2011-11-08
2011-32-0514
A modern exhaust silencer system designed for an internal combustion engine typically incorporates a number of acoustic elements, which all contribute in the overall acoustic performance of the system and determine the sound radiation into the surroundings. The characteristics of individual elements in acoustic silencers affecting sound propagation are referred to as the passive acoustic effect treated in this paper. An acoustic transmission loss is a parameter often used in engineering to describe the passive acoustic performance of exhaust system elements. However, in order to provide a complete acoustical characterization of silencers and silencer components the acoustic 2-port elements (the scattering matrix or alternatively the transfer matrix) should be additionally analyzed. In this paper the scattering matrixes are studied systematically for several small engine silencer elements in a variety of operating conditions.
X