Refine Your Search

Search Results

Author:
Viewing 1 to 15 of 15
Technical Paper

A Theoretical and Experimental Study of Resonance in a High Performance Engine Intake System: Part 2

2007-04-16
2007-01-1399
The unsteady gas dynamic phenomena in a racecar airbox have been examined, and resonant tuning effects have been considered. A coupled 1D/3D analysis, using the engine simulation package Virtual 4-Stroke and the CFD package FLUENT, was used to model the engine and airbox. The models were experimentally validated. An airbox was designed with a natural frequency in the region of 75 Hz. A coupled 1D/3D analysis of the airbox and a Yamaha R6 4-cylinder engine predicted resonance at the single-cylinder induction frequency; 75 Hz at an engine speed of 9000 rpm. The amplitude of the pressure fluctuation was found to be influenced by the separation between the intake pipes in the airbox. For an n-cylinder even-firing engine, if the intakes are coincident in the airbox, then the fundamental and all harmonics of the forcing function, apart from the (n-1)th, (2n-1)th, etc. will cancel. That is, only the multi-cylinder induction frequency and its multiples will not cancel.
Technical Paper

A Theoretical and Experimental Study of Resonance in a High Performance Engine Intake System: Part I

2006-12-05
2006-01-3653
The unsteady gas dynamic phenomena in engine intake systems of the type found in racecars have been examined. In particular, the resonant tuning effects, including cylinder-to-cylinder power variations, which can occur as a result of the interaction between an engine and its airbox have been considered. Frequency analysis of the output from a Virtual 4-Stroke 1D engine simulation was used to characterise the forcing function applied by an engine to an airbox. A separate computational frequency sweeping technique, which employed the CFD package FLUENT, was used to determine the natural frequencies of virtual airboxes in isolation from an engine. Using this technique, an airbox with a natural frequency at 75 Hz was designed for a Yamaha R6 4-cylinder motorcycle engine. The existence of an airbox natural frequency at 75 Hz was subsequently confirmed by an experimental frequency sweeping technique carried out on the engine test bed.
Technical Paper

Prediction of Formula 1 Engine and Airbox Performance using Coupled Virtual 4-Stroke and CFD Simulations

2002-12-02
2002-01-3318
This paper describes a technique whereby race car airbox performance can be assessed directly in terms of predicted engine performance by coupling a one-dimensional engine model on a timestep-by-timestep basis to a three-dimensional computational fluid dynamics (CFD) model of an airbox. A high-performance three-litre V10 engine was modelled using Virtual 4-Stroke unsteady gas dynamics engine simulation software, while two airbox configurations, representative of those used in FIA Formula 1 (F1), were modelled using general purpose CFD software. Results are presented that compare predicted engine performance for the two airbox geometries considered in the coupled simulations. Individual cylinder performance values are also presented and these show significant variations across the ten cylinders for each airbox simulated.
Technical Paper

An Assessment of a Stratified Scavenging Process Applied to a Loop Scavenged Two-Stroke Engine

1999-09-28
1999-01-3272
Stratified scavenging has been applied to two-stroke engines to improve fuel consumption and reduce exhaust emissions. To evaluation how this is achieved a stratified scavenging process was simulated using a three-gas single-cycle scavenging apparatus. The experiment simulated the fuel stream entering the rear transfer port of a five port cylinder and air streams entering the remaining ports. The scavenging efficiency and fuel trapping are calculated after the cycle by examining the cylinder contents. The design of the apparatus is particularly suited to investigating cylinder design changes during the prototype stage of engine development. A simulation of the stratified scavenging experiment using the Computational Fluid dynamics (CFD) code VECTIS, showed good correlation with measured results. The simulation provides a real insight into the cylinder flow behaviour of the separate fuel and air streams entering the cylinder.
Technical Paper

Reducing Exhaust Hydrocarbon Emissions from a Small Low Cost Two-Stroke Engine

1998-09-14
982013
An experimental and theoretical investigation to minimise the hydrocarbon emissions from a 25 cm3 two-stroke engine with finger transfer ports is described. Finger ports have the side of each passage closest to the cylinder axis open to the cylinder bore making it possible to produce high-pressure die castings with the simplest of dies. Cylinders utilising this type of porting are believed to have inferior scavenging characteristics compared to those using closed or cup-handle porting. The effects of cylinder scavenging characteristics and port optimisation on engine performance were examined using a computer simulation. It is concluded that there is potential for a 70% reduction in exhaust hydrocarbon emissions through scavenging efficiency improvements and port optimisation, provided the cylinder scavenging can be developed to match that of the best existing unconventional crossflow scavenged designs.
Technical Paper

CFD Simulation and Validation of the Flow within a Motored Two-Stroke Engine

1997-02-24
970359
A CFD simulation of the flow within a motored two-port loop-scavenged two-stroke engine is described. The simulation is carried out using the STAR-CD CFD code and employs a multi-block approach to simulate the flow within the transfer duct, cylinder, and exhaust duct. A moving mesh with cell layer activation-deactivation is used to represent the reciprocating piston motion. Predictions of the flow within the cylinder and at the transfer port are presented over the open cycle and are compared to an existing measured velocity field for an engine speed of 600 rpm and a delivery ratio of unity. The results show the in-cylinder flow to have a highly complex structure dominated by recirculating flow features. The in-cylinder flow is considerably affected by reverse flow through the exhaust port at exhaust port opening, and is not seen to fully establish until after bottom dead centre.
Technical Paper

Ram-Tuned and Air-Assisted Direct Fuel Injection Systems Applied to a SI Two-Stroke Engine

1995-02-01
950269
This paper describes the operation and performance of two direct fuel injection strategies, namely a ram-tuned injection system (single fluid) and an air-assisted injection system (twin fluid). The injection systems are tested on a 500 cm3 single-cylinder cross scavenged two-stroke cycle engine during part load operation at 1600 rev/min. Particle sizing tests are presented for each injection system, in conjunction with specific emissions and performance results for firing engine tests.
Technical Paper

CFD Prediction of a Two-Stroke, In-Cylinder Steady Flow Field An Experimental Validation

1994-03-01
940399
LDV is used to measure steady flow in a two port loop scavenged model two-stroke engine cylinder. The model cylinder, machined from acrylic for maximum optical access, is geometrically identical to that used in a previous dynamic study of transfer port efflux vectors. The measured flow field is compared with a CFD prediction which employs experimentally measured velocity, mass flow rate, and turbulence intensity as the inlet boundary condition at the transfer port. The finite volume prediction, using the PHOENICS general purpose code recreates the global flow pattern well, but shows some local discrepancies in flow direction and magnitude. Levels of turbulent kinetic energy were poorly recreated using a k-ϵ model of turbulence, especially around impingement of the incoming jets where local errors of up to 60% were seen.
Technical Paper

Application of Direct Air-Assisted Fuel Injection to a SI Cross-Scavenged Two-Stroke Engine

1993-09-01
932396
A 500 cc single cylinder two-stroke engine employing cross scavenging and direct air-assisted gasoline injection is described. Preliminary engine test results are presented for 3000 rpm full load and 1600 rpm part load operating conditions. The effects of fuel injection timing on full and part load brake specific fuel consumption and exhaust emissions are examined.
Technical Paper

LDV Measurement of Transfer Port Efflux Velocities in a Motored Two-Stroke Cycle Engine

1992-09-01
921694
The measurement of transfer port efflux velocities using laser doppler velocimetry (LDV) in a motored model two-stroke engine is described. The single cylinder engine used is of two port loop scavenged design, externally blown to provide scavenge flow into the cylinder during the entire port open period. LDV measurements were taken along a vertical path, central to the transfer duct, at the port exit over a range of crankangles at motoring speeds of 225rpm, 600rpm, and 900rpm. At 225rpm further measurements were taken for a range of delivery ratios from 0.7 to 2.0. Relatively uniform velocity profiles indicate plug like flow issuing from the port under most conditions. The resultant flow direction is seen never to align with the transfer duct walls, but to vary as a function of crankangle. Quantitative analysis of angles defining mean flow direction reveal that dynamic efflux behaviour is essentially similar for all tested speeds and delivery ratios.
Technical Paper

Motored and Steady Flow Boundary Conditions Applied to the Prediction of Scavenging Flow in a Loop Scavenged Two-Stroke Cycle Engine

1990-02-01
900800
The application of in-cylinder multi-dimensional modelling to the scavenging process within the cylinder of a two-stroke cycle engine requires a prior knowledge of the flow entering that cylinder. Without this information, assumptions must be made which limit the accuracy of the theoretical simulation. This paper describes laser doppler anemometry measurements of transfer port efflux flow for a two-port loop scavenged test cylinder motored at 200 rev/min. The cylinder was externally blown to ensure scavenge flow into the cylinder over the entire transfer port open period. The test results indicate that the flow does not enter the cylinder in the port design direction, but varies as a function of port height during both port opening and closing. Comparison of motoring results with those obtained under steady flow testing of the same cylinder, shows adequate correlation, thereby justifying the use of steady flow information for dynamic simulation.
Technical Paper

An Experimental Comparison of Loop and Cross Scavenging of the Two-Stroke Cycle Engine

1986-09-01
861240
In a previous paper (6)* SAE 850178, the authors pointed out that the single-cycle gas simulation rig which they had developed would prove to be an invaluable experimental tool for the development of two-stroke cycle engine cylinders to attain better scavenging and trapping efficiency of the fresh charge. This paper reports on the use of that now proven experimental technique to examine one of the longest running, and hitherto unresolved, discussions in the field of small two-stroke cycle engines: is loop-scavenging really superior to cross-scavenging? All of the cross-scavenging tests in the paper are compared to tests conducted on loop-scavenged cylinders of the same basic geometry and which were reported previously to SAE. The main conclusion from the experimental investigation is that cross-scavenging is superior to loop-scavenging at low or modest scavenge ratios but is inferior at high scavenge ratios.
Technical Paper

Computational Fluid Dynamics Applied to Two-Stroke Engine Scavenging

1985-09-01
851519
A three dimensional computational fluid dynamics program is used to simulate theoretically the scavenging process in the loop-scavenged two-stroke cycle engine. The theoretical calculation uses the k - ε turbulence model and all calculations are confined to the in-cylinder region. The calculation geometry is oriented towards five actual engine cylinders which have been tested under firing conditions for the normal performance characteristics of power, torque, and specific fuel consumption. The same five engine cylinders have also been experimentally tested on a single-cycle gas testing rig for their scavenging efficiency - scavenge ratio characteristics. The ranking of the cylinders in order of merit in terms of scavenging efficiency by both the rig and the theoretical calculations is shown to be in good agreement with the evidence provided by the actual firing engine test results.
Technical Paper

Single Cycle Gas Testing Method for Two-Stroke Engine Scavenging

1985-02-01
850178
This paper presents a single-cycle gas simulation of the scavenging process in a two-stroke cycle engine. The apparatus used is described in the most detailed fashion and the experimental procedure is covered completely. On the apparatus is placed some eleven differing cylinders of a Yamaha 250 motorcycle engine and the scavenging efficiency - scavenge ratio characteristics of each determined experimentally. The results of these experiments are compared with the known performance characteristics of the same eleven cylinders which were obtained under firing conditions for variations of power, torque, air-flow, fuel consumption and scavenging efficiency at several speeds and throttle positions. The correlation, between the ranking of the several cylinders determined on the scavenging simulation apparatus with the performance characteristics obtained under firing conditions, is very good.
Technical Paper

Further Developments in Scavenging Analysis for Two-Cycle Engines

1980-02-01
800038
In 1968 Professor Alfred Jante published an SAE paper detailing a method of assessing the scavenging behaviour of a two-cycle engine. It was a simple technique involving motoring the engine and measuring the (cylinder head removed) velocity contours at the cylinder head level using pitot tubes. It attracted wide attention in industry, but with varying degrees of acceptance and results. This paper attempts to establish in a logical manner and with a considerable’ volume of experimental data that the method proposed by Jante has real relevance, but to obtain acceptable accuracy in terms of predicting good and bad scavenging for particular engine cylinders the results have to be analysed rather more carefully and completely than the approach adopted by Jante.
X