Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Dual Equal VCT - A Variable Camshaft Timing Strategy for Improved Fuel Economy and Emissions

1995-02-01
950975
In the Dual Equal variable camshaft timing strategy, the intake and exhaust events are equally phase-shifted relative to the crankshaft as a function of engine operating conditions. The primary emphasis is on improved fuel economy and emissions at part load. The external EGR system is potentially eliminated, with consequent improvement in the transient control of residual dilution. Additional benefits with optimized phasing are moderate improvements in idle stability and full load performance. In this paper, the Dual Equal VCT strategy is described, and engine dynamometer test results are shown which illustrate the benefits at part load, idle, and WOT. Implications of the strategy on phase-shifter response requirements and on the engine control system are discussed.
Technical Paper

Comparison of Variable Camshaft Timing Strategies at Part Load

1996-02-01
960584
In this paper, four Variable Camshaft Timing (VCT) strategies are described: Intake Only, Exhaust Only, Dual Equal, and Dual Independent. The strategies utilize internal residual at part load for NOx reduction and fuel consumption improvement. The emphasis of the paper is a detailed comparison of part load data from steady-state engine dynamometer testing. Projections of EPA cycle fuel economy and emissions benefits relative to external EGR are also shown. Only limited data was acquired at idle and WOT. Implications of the strategies on the engine control system are briefly addressed.
Technical Paper

The Effects of Load Control with Port Throttling at Idle- Measurements and Analyses

1989-02-01
890679
An experimental and analytical study was conducted to investigate the effects of load control with port throttling on stability and fuel consumption at idle. With port throttling, the pressure in the intake port increases during the valve-closed period due to flow past the throttle. If the pressure in the port recovers to ambient before the valve overlap period, back flow into the intake system from the cylinder is eliminated. This allows increased valve overlap to be used without increasing the residual mass fraction in the cylinder. Results showed that, with high valve overlap and port throttling, idle stability and fuel consumption can be maintained at values associated with low overlap in a conventionally throttled engine. However, implementation of this concept in production is regarded to require precision-fit and balanced port throttles, an external vacuum pump for vacuum systems support, and revision of the PCV system.
X