Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Research on Photobiological Safety of Automotive Active Infrared Detection System

2021-04-06
2021-01-0072
The automotive active infrared detection system is usually applied to the night driver assistance system or the diver attention monitoring system. However, the infrared light emitted by the active infrared detection system can cause damage to retina, cornea and eye crystals. This paper has studied the photobiological safety of the infrared light source used in the automotive active infrared detection system. Although it has been already have the general requirements of photobiological safety in international standards, there is not any requirements for automotive active infrared detection system. The range of the active infrared detection system depends on the radiation intensity of the infrared light source, but too much radiation intensity will cause harm to retina, cornea and eye lens when the infrared light source is too close to eyes.
Technical Paper

Conceptual Design and Weight Optimization of Aircraft Power Systems with High-Peak Pulsed Power Loads

2016-09-20
2016-01-1986
The more electric aircraft (MEA) concept has gained popularity in recent years. As the main building blocks of advanced aircraft power systems, multi-converter power electronic systems have advantages in reliability, efficiency and weight reduction. The pulsed power load has been increasingly adopted--especially in military applications--and has demonstrated highly nonlinear characteristics. Consequently, more design effort needs to be placed on power conversion units and energy storage systems dealing with this challenging mission profile: when the load is on, a large amount of power is fed from the power supply system, and this is followed by periods of low power consumption, during which time the energy storage devices get charged. Thus, in order to maintain the weight advantage of MEA and to keep the normal functionality of the aircraft power system in the presence of a high-peak pulsed power load, this paper proposes a novel multidisciplinary weight optimization technique.
Technical Paper

Teleoperation in Space - Modeling Effects of Displaced Feedback and Microgravity on Tracking Performance

1998-07-13
981701
During teleoperation in space, there are two major sources of performance degradation: (1) spatiotemporal displacements in visual feedback; confounded by (2) microgravity effects, attributable to kinetic and inertial properties of large masses maneuvered in low gravity. Both sources contributed to the Progress-Mir collision in 1997. This report describes findings from two sets of studies directed at modeling possible effects on teleoperation tracking performance of spatial, temporal, and microgravity perturbations in visual feedback presented to the teleoperator. In the first set of studies, effects of both temporal and angular displacements in visual feedback on control of tracking behavior by individual subjects were evaluated under conditions of both continuous pursuit and discrete movement tracking.
X