1998-02-23

Design of Engine Mount Using Finite Element Method and Optimization Technique 980379

In order to obtain an automatically designed shape of engine mount, an optimum shape design process of engine mounting rubber is introduced. After the primary stiffness values of an engine mount system are determined, the secondary stiffness values and the shapes are designed. By using nonlinear spring analysis, the design of the secondary stiffness and the gap size of engine mount can be carried out. In this work, the finite element program including the optimization code is developed and used. The optimum shape design process of engine mounting rubber using a parametric approach is suggested. The optimization code is used with the commercial nonlinear finite element program to determine the shape to satisfy the stiffness requirements of engine mounts. An engine mount system used in a passenger car is chosen for an application model. Three engine mounts are designed by the procedure mentioned above. The shape from the result of the parameter optimization is determined as a final model with some modifications. The stiffness values of the optimized models along the principal direction are compared with the design specifications of the current model. Finally, an overview of the current status and future works for the engine mount design are discussed.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

The Optimum Design of Engine Mounting

982825

View Details

TECHNICAL PAPER

Design of Shape for Visco-Elastic Vibration Isolation Element by Topological and Shape Optimization Methods

2009-01-2127

View Details

TECHNICAL PAPER

Finite Element Concept Models for Vehicle Architecture Assessment and Optimization

2005-01-1400

View Details

X