1997-05-01

Underwater Heat Engines Using Non-Conventional Atmospheres 971674

Long range, extended endurance, variable speed autonomous underwater vehicles (AUVs) appear to be an attractive solution to problems of environmental monitoring, geophysical exploration and military surveillance. To undertake their intended autonomous missions these vehicles require reliable and cost-effective power systems. Although there is presently an extensive interest in untethered AUVs, with far reaching efforts being made in a variety of activities, only limited headway has been made in the development of power systems which could be readily integrated into these vessels.
The majority of current research is focusing on increasing the underwater endurance and hence cost effectiveness of the vehicle by developing compact, lightweight high energy density power systems for vessel propulsion. Subsequently, a number of different power systems have been investigated proposed, designed and developed. Of the dynamic heat engines available, one strong contender for underwater vehicle operation is the diesel engine. In order function underwater the engine must utilize a non-air or synthetic atmosphere for the combustion process. However, there is a lack of published data on how the engine actually performs with gaseous composition variations in the intake atmosphere.
This paper reviews the development and technology requirements for AUVs and details the experimental evaluation of a diesel engine whilst operating with non-conventional atmospheres.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

The Study of Exhaust Emission Reduction and Lubricity of Two Stroke Engine

911276

View Details

TECHNICAL PAPER

Experimental Performance Results from a Carbon Dioxide/Oxygen Breathing Diesel Engine

941699

View Details

TECHNICAL PAPER

Comparison of Functioning Systems of the Car and Biological Organism

2004-01-0470

View Details

X