1997-02-24

Computer Aided Engineering in the Design of Catalytically Assisted Trap Systems 970472

The design of a diesel particulate trap system to fit a specific vehicular application requires significant expenditure, due to the high degree of interaction between the vehicle operation and trap behavior. The assistance of modeling in the design process is already well established. This paper presents the basic principles of a Computer Aided Engineering methodology aimed to assist the selection of the basic parameters of a Diesel Particulate Trap System by reducing the number of the necessary experimental tests. The computational modules currently supporting the CAE methodology are based on fundamental mathematical models, incorporating a small number of semi-empirical relations derived by experimental data on trap loading and catalytic regeneration, exhaust system heat transfer and trap backpressure effect on fuel consumption. The experimental data employed in the CAE system development, have been acquired from a case study involving a light duty van equipped with a cordierite filter and a Cerium based catalytic fuel additive. At this initial development phase, the capability of this methodology to assist optimization of filter sizing and positioning is demonstrated. The main optimization criteria in this process are fuel consumption penalty of the trap system and filter durability.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Analyzing Factors Affecting Gross Indicated Efficiency When Inlet Temperature Is Changed

2018-01-1780

View Details

TECHNICAL PAPER

Methodology for Exhaust System Design Optimization for Light Weight Passenger Vehicles

2019-26-0269

View Details

JOURNAL ARTICLE

Sequential DoE Framework for Steady State Model Based Calibration

2013-01-0972

View Details

X