1997-02-24

A Theoretical Code to Simulate the Behavior of an Electro-injector for Diesel Engines and Parametric Analysis 970349

A simulation code of an innovative electro-injector for Diesel engines is presented with the preliminary analysis carried out using the code. The simulation code is based on the concentrated volume method. The energy and continuity conservation equations and dynamic equations are used for the movable parts of the system under friction. The one dimensional code simulated the propagation in the feeding pump and the control of the electro-injector. The program uses the method of characteristics to solve conservation equations, simulating the propagation in the pipe between the two chambers. To go deeply into the study of the electro-injector, main routine tests were carried out checking the exact value of diesel fuel parameters and the fuel energy losses with stationary and instationary flows. A comparison with different experimental results obtained by different types of electroinjectors, running at real conditions, has been made with good agreement. Finally, a theoretical sensitivity analysis was carried out using the Design Of Experiment method to optimize the electroinjector performances.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Numerical Analysis of High-Pressure Fast-Response Common Rail Injector Dynamics

2002-01-0213

View Details

TECHNICAL PAPER

Simulation Guided Design for Developing Direct Injection Combustion Systems of Gasoline Engines

2016-01-2313

View Details

TECHNICAL PAPER

Modeling the effect of an in-line Pump-Based Fuel Injection System Characteristics for Small Industrial DI Diesel Engines on Spray Development

2000-05-0062

View Details

X