1996-05-01

Carbon Canister Modeling for Evaporative Emissions: Adsorption and Thermal Effects 961210

A one-dimensional carbon canister adsorption model (CANMOD) has been developed to assist in the prediction of the performance of carbon bed canisters in vehicle evaporative emissions control systems. The model accounts for mass transfer and transient thermal phenomena, both of which are found to be essential in accurately describing canister behavior. The model assumes the vapor above the carbon to be in equilibrium with the adsorbed mass while the local temperature is determined by the dynamic balance between the heat of adsorption, carbon heat capacity and heat loss to ambient. The results of the model compare well with laboratory data on a 1L canister under load and purge conditions typical of vehicle operation. Variables investigated include: load level, feedgas concentration, and purge rate.
The model accurately predicts the hydrocarbon mass adsorbed by the canisters, as well as breakthrough times, and hydrocarbon removal rates. Less accurate predictions are obtained for details of the breakthrough curve and local bed temperatures at the highest loading and purge rates, indicating a need for refinement of the model by including transient vapor-carbon mass transfer, and two-dimensional effects.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

Calculation Method of Adsorption and Desorption Performance of Butane Gas in Carbon Canister

2008-01-0625

View Details

TECHNICAL PAPER

Activated Carbon Canister Performance During Diurnal Cycles: An Experimental and Modeling Evaluation

971651

View Details

TECHNICAL PAPER

Modeling and Simulation of N-butane Adsorption/Desorption in a Carbon Canister

2004-01-1680

View Details

X