1994-09-01

Droplet Breakup in Turbulent Flows 941735

For high Reynolds number flows, the fine structure turbulence is universal in the inertial subrange according to the Kolmogorov local isotropy theory; while for low-to-moderate Reynolds number flows, the turbulence tends to display a common structure for a particular type of shear flows from the Townsend structural similarity. The power laws for the turbulent flows reflect the similarity in the turbulence fine structure.
The paper discusses the relationship between drop breakup and turbulence fine structure. A predictive formula for drop breakup in the turbulent flow is suggested based on the energy balance between turbulence separating kinetic energy (i.e. turbulence structure function) and surface tension. The model has been validated on a number of empirical relations for drop breakup in different turbulent flows.
It is known that the drop size distribution in shear flows can be approximately expressed by a lognormal distribution. Using statistical approach, the paper provides a theoretical proof on this fact. The model describes that the drop breakup experiences a cascade splitting process and the drop size tends to be asymptotically lognormally distributed. A numerical example is given to illustrate details of the breakup process.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Biodiesel Influence on Particulate Matter Behavior during Active and Passive DPF Regeneration

2011-24-0204

View Details

STANDARD

CALIBRATION SPARK PLUGS

AS889

View Details

TECHNICAL PAPER

Effects of Intake Port Geometry on Large Scale In-Cylinder Flows

980484

View Details

X