1994-03-01

An Analysis of Trends of Vehicle Frontal Impact Stiffness 940914

Impact induced vehicle residual deformation serves as a basis for the reconstruction engineer to make a determination of the energy absorbed during the impact phase of a collision. Many impact phase reconstruction algorithms assume a linear relation between an absorbed energy function and residual crush in order to derive collision severity (Delta V, BEV, etc.). This is done through the assumption of a constant spring stiffness value to describe the vehicle frontal impact stiffness. However, some recent rigid barrier impact test data has demonstrated non-linear trends between crash energy and residual crush. The total body of available crash test data indicates that vehicle frontal stiffness cannot be precisely modeled through the use of a single linear spring stiffness for all vehicles. This paper will explore stiffness trends and make comparisons to the previously assigned linear assumption for a diverse sample of vehicles and test speeds into frontal fixed barriers. The available crash test data is plotted and analyzed and the resulting linear and non-linear trends are discussed. Applications to the accident reconstruction field are also explored.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Crash Recorder for Safety System Studies and as a Consumer's Product

910656

View Details

TECHNICAL PAPER

Simulation of a Two-Car Oblique Side Impact Using a Simple Crash Analysis Model

840858

View Details

TECHNICAL PAPER

How to Use PC-CRASH to Simulate Rollover Crashes

2004-01-0341

View Details

X