1993-11-01

Geometric Induced Instability in Drum Brakes 933072

The stability of vibratory motions of the drum/shoe assembly in drum brakes, is studied. The behavior of this assembly is explained in terms of the vibration modal numbers of the drum and the shoe. The equations of motion of the distributed parameters system are obtained where both motions of drum and shoe are considered to be coupled by the tangential distributed friction force. This force is generated by frictional sliding between the rotating drum and a pinned-pinned shoe and it depends on the relative velocity of sliding. The domains of stability at different vibrational modes of both drum and shoe are shown. Geometric induced instability is likely to occur at the first mode of the drum for all extension modes of the shoe. In case of flexural modes of the shoe, instability is found to be dependent upon the drum radius and the angle subtended by the shoe. It is found also that the number of unstable established modes increase greatly with the drum radius as well as the angle subtended by the shoe. The variation of the thickness of either the shoe or the drum, does not affect the system stability. Although the squeal noise (or any other kinds of instability like chatter, stick-slip,…) depends on these two geometrical parameters, the present analysis proves that instability in drum brakes is an inherent property caused by the geometrical coupling of the vibrating components in the braking system.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Effect of Design Geometry on the Thermal Fatigue Strength of Brake Drum Made in Vermicular Cast Iron

2006-01-2526

View Details

TECHNICAL PAPER

The Experimental and Simulational Analysis on Drum Brake Squeal by Structurally Closed-Loop Coupling Model

931879

View Details

TECHNICAL PAPER

Numerical and Experimental Evaluation of Brake Squeal

2013-36-0030

View Details

X