1993-03-01

Fault Tolerance Analysis of Alternate Automotive Brake System Designs 930511

Brake systems in current production automobiles are the result of a long evolutionary process beginning with the first practical hydraulic brake patent in 1917. While the basic hydraulic design has many advantages, recent modifications to this system for anti-lock braking and traction control considerably increase the cost of manufacture. As a result, many manufacturers are investigating the possibility of developing alternate braking system structures that cost less and can easily interface with vehicle electronics. Evaluating these systems for fault tolerance and failure effects is crucial to provide a safe and reliable vehicle braking system. This paper demonstrates the use of the Fault Tree Analysis method for carrying out such an evaluation.
An example system is presented to illustrate the application of this method to automobile brake design. Through this example, the paper demonstrates how one can evaluate the effects of a failure propagation through the system, suggest structural changes to the system to improve its fault tolerance, and analyze systems where detailed internal functions of some the subsystems are unknown. The results of the analysis method for the example system are also presented.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Methodology for the Safe and Economical Fatigue Design of Components in ABS/ETC Braking Systems Under Variable Amplitude Loadings

1999-01-0366

View Details

TECHNICAL PAPER

Truck Brake Failure: Differences between Failure Modes for Drum and Disc Brakes

2018-01-0528

View Details

TECHNICAL PAPER

Designing a Next Generation Trailer Braking System

2021-01-1268

View Details

X