1992-10-01

Role of Micron - Sized Roughness in Swept - Wing Transition 921986

Stability and transition experiments are conducted in the Arizona State University Unsteady Wind Tunnel on a 45° swept airfoil. The pressure gradient is designed so that transition and stability are purely crossflow-dominated. Flow visualization and hot-wire measurements show that the development of the crossflow vortices is influenced by roughness near (not at) the attachment-line. Comparisons of transition location are made between a painted surface (distributed 9 μm peaks and valleys on the surface), a machine-polished surface (0.5 μm rms finish), and a hand-polished surface (0.25 μm rms finish). Then, isolated 6 - 9 μm roughness elements are placed near the attachment line on the airfoil surface under conditions of the final polish (0.25 μm rms). These elements amplify a centered stationary crossflow vortex and its neighbors, resulting in localized early transition. The diameter and height of these roughness elements are varied in a systematic manner. Spanwise hot-wire measurements are taken behind the roughness element to document the enhanced vortices. These scans are made at several different chord locations to examine vortex growth.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

Aerodynamic Structure and Development of Formula 1 Racing Car Wakes

2014-01-0600

View Details

TECHNICAL PAPER

Advances in Flow Visualization Using Liquid-Crystal Coatings

871017

View Details

TECHNICAL PAPER

Western Michigan University Research Vehicle Gamma

810837

View Details

X