1992-09-01

A Contact Stress Model for Predicting Rolling Contact Fatigue 921720

Predicting fatigue performance in concentrated contacts under thin film (or mixed) lubrication conditions has historically involved various empirical approaches. Typically a lubrication parameter is used in an experimentally derived equation to predict the expected rolling contact performance. However, this model doesn't explain the performance improvements. Enhanced finish bearings have exhibited longer life than standard finish bearings, especially when bearings are operated with thin EHL film. In this paper, the contact surfaces of test bearings were analyzed by using a micro-macro contact model in which the macro-contact was elastic contact, and the micro-contact was elastic-plastic contact. The interior subsurface stress maps were calculated from the real contact surfaces, which included the effects of roughnesses, waviness, and profiles. The predicted subsurface stress maps statistically explored the local stress levels under the real contact surfaces for various EHL film thicknesses, and show the reason why the enhanced finish bearings have longer life than the standard finish bearings with thin EHL film operating conditions.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
Book
BOOK

Universal Joint and Driveshaft Design Manual

View Details

TECHNICAL PAPER

Fatigue Life Behavior of a Hypoid Gear Tooth Root Taking the Influences of Orbital Forging into Account

2009-01-0812

View Details

TECHNICAL PAPER

Low Cycle Fatigue of A356-T6 Cast Aluminum Alloy Wheels

881707

View Details

X