1992-02-01

Fender Material Systems: A Lifecycle Cost Comparison 920373

This paper explores a framework for simulating the lifecycle costs of an automotive component for alternative material systems. The front fender for a midsize sedan is chosen as a case study. The material systems under consideration include the following: stamped steel, stamped aluminum, compression molded SMC, injection molded thermoplastic, and reinforced reaction injection molded polyurethane (RRIM PUR).
The lifecycle for the fender is defined to include manufacturing, operation, and post-use. Using a technique called Technical Cost Modeling, manufacturing costs including fabrication, assembly, and priming are simulated for a range of production volumes. Operation costs are calculated in two areas: fuel consumption and repair. Component weight is examined as it influences fuel consumption (and therefore cost) for varying scenarios of vehicle life and annual mileage. Repair costs are assessed for different collision speeds and directions. Post-use cost (or value) is calculated based on the material type and the operating and investment cost required for the four stage recycling process: dismantling, shredding/ferrous separation, non-ferrous separation, and landfilling.
The aggregate of the three components of lifecycle cost is then summed for the alternative material systems. This collective measure is then used to examine such questions as how much more manufacturers might be willing to pay for a lighter or more durable component.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Tailor-Welded Aluminum Blanks for Liftgate Inner

2007-01-0421

View Details

TECHNICAL PAPER

Die Wear Severity Diagram and Simulation

2007-01-1694

View Details

TECHNICAL PAPER

Designing Automotive Fuel Systems in High Temperature Plastics

830070

View Details

X