1991-09-01

Numerical Simulations of Hypersonic Real-Gas Flows Over Space Vehicles 912045

Hypersonic flows over simple 3-D bodies and a space vehicle are simulated using a real-gas Navier- Stokes code under an equilibrium air assumption. This code is based on 3-D upwind flux splitting scheme with generalized Roe's Riemann solver. The real-gas effect is incorporated using the VEG (Variable Equivalent Gamma) method [1]*. The equivalent gamma and other thermodynamic properties are calculated using empirical curve fits [2].
Numerical simulations are conducted for flow fields around a spherical blunt body, a spherical-nose cylinder, and a cone-cylinder as simple configurations, and HOPE (H-orbiting plane: Japanese spaceplane) as a practical plane configuration. Flow conditons are Mach numbers of 7.72, 15.0 for the blunt bodies, 6.86 for the cone-cylinder, and 15.0 for the HOPE. Computed pressure and density distributions are presented. Results for simple configuration cases are compared with experimental data for the code validation.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
X