1991-09-01

Finite Element Analysis of Spiral Hose Utilizing Laminate Theory 911869

Thick elastomeric composite wire-reinforced spiral hose are modeled as a series of thin-shell layers of rubber-wire separated by rubber layers. A linear elastic small deformation finite element computer code with laminate capability is used for solution. Measured wire helix angle, braid diameter, and hose axial displacement are used to fit an equivalent rubber modulus to assure thin-shell plane stress and to partially account for braid angle rotation and diameter change during pressurization. Finite element results for radial displacement and rotation angle agree with experimental data and theoretical calculations. Computed tension variation between wires is compared with current theory. Strong load sharing is predicted by the finite element method. Inner and outer wire layers carry less tension than wire layers immediately adjacent to the hose midplane.
Induced torque is computed. Torsional and flexural rigidities generated from finite element thin-shell laminate theory are compared with both theoretical and experimental data. Results are reasonable.
Wire reinforcement behavior is analyzed for the region near clamped end couplings. Results agree favorably with theoretical predictions based on deformation of a single helical wire in an outer layer.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

A Theoretical Analysis of Spiral Hose Wire Reinforcement in the Region Near Clamped Hose Couplings

901656

View Details

TECHNICAL PAPER

Wire Braid Angle Response Characteristics in Hydraulic Hose

972706

View Details

TECHNICAL PAPER

Determination of Assembly Stresses in Aluminum Knuckles

1999-01-0345

View Details

X