1991-09-01

An Alternative Method for the Prediction of Unsteady Gas Flow Through the Internal Combustion Engine 911850

Many computational methods have been suggested for the solution of this theoretical situation, such as Riemann variables, Lax-Wendroff and other finite difference procedures. The basic approach adopted here is to re-examine the fundamental theory of pressure wave motion and adapt it to a mesh method interpolation procedure. At the same time the boundary conditions for inflow and outflow, such as the filling and emptying of engine cylinders, has been resolved for the generality of gas properties and in terms of the unsteady gas flow which controls those processes. The same generality of gas property and composition is traced throughout the pipe system. This change of gas property is very significant in two-stroke engines where the exhaust blowdown is followed by short-circuited scavenge air. Vitally important in this context is the solution for the continual transmission and reflection of pressure waves as they encounter both differing temperature gradients and gas properties, and both gradual and sudden changes of area throughout the engine ducting. Of equal importance is the ability of the calculation to predict the effect of internal heat generation within the duct or of external heat loss from it, and to be able to trace the effect of the ensuing gas temperature change on both the pressure wave system and the nett gas flow.
The new theoretical approach is programmed for a computer and the physical dimensions of a Husqvarna 250 motocross engine are used as input data. The correlation of the theory with the measured pressure and performance characteristics is demonstrably good. Extended insight into the behaviour of the actual engine is described.
One of the unusual aspects of this new approach to this necessarily very complex theoretical situation is that both the theory, and the computational method for its solution, is relatively easy to comprehend and to apply in practice.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Correlation of an Alternative Method for the Prediction of Engine Performance Characteristics with Measured Data

930501

View Details

TECHNICAL PAPER

Experimental Evaluation of 1-D Computer Codes for the Simulation of Unsteady Gas Flow Through Engines - A First Phase

941685

View Details

TECHNICAL PAPER

In-Cylinder Tumble Flow Characteristics and Implications for Fuel/Air Mixing in Direct Injection Gasoline Engines

2003-01-3104

View Details

X