1990-07-01

Recent Experiences with Iodine Water Disinfection in Shuttle 901356

Microbial proliferation in the STS potable water system is prevented by maintaining a 2-5 ppm iodine residual. The iodine is added to fuel cell water by an iodinated ion exchange resin in the Microbial Check Valve (MCV). Crew comments indicated excessive iodine in the potable water. To better define the problem, a method of in-flight iodine analysis was developed. Inflight analysis during STS-30 and STS-28 indicated iodine residuals were generally in the 9-13 ppm range. It was determined that the high iodine residual was caused by MCV influent temperatures in excess of 120 °F. This is well above the MCV operating range of 65-90 °F. The solution to this problem was to develop a resin suitable for the higher temperatures. Since 8 months were required to formulate a MCV resin suitable for the higher temperatures, a temporary solution was necessary. Two additional MCV's were installed on the chilled and ambient water lines leading into the galley to remove the excess iodine. These reduced the iodine residual to 3-4 ppm during STS-33, STS-34, STS-36 and STS-32. A high-temperature resin was formulated and was initially flown on STS-31.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Field Performance Analysis of a Tractor and a Large Square Baler

2011-01-2302

View Details

TECHNICAL PAPER

The Effects of Alternative Biological Primary Processing Approaches on the Efficiency of an Integrated Water Processing System

2005-01-2980

View Details

TECHNICAL PAPER

Wastewater Processing Cascade Distillation Subsystem Design and Evaluation

2006-01-2273

View Details

X