1989-09-01

Electrode Heat Transfer During Spark Ignition 892083

Heat transfer from the flame kernel to the electrodes during the spark ignition process is of interest for predicting the minimum ignition energy at a given engine operating condition. Experiments conducted in a constant volume bomb at near ignition limit conditions with small and large electrode surface areas (comparable to J gap plug), coupled with a phenomenological model, show the lumped heat transfer coefficient to range from 150-200 W/m2 K during the first 3 milliseconds of the ignition period. An additional analytical approach that uses the measured time dependent kernel-electrode contact areas gives reasonable agreement with the experimentally determined heat transfer coefficient and demonstrates that the dominant mechanism is thermal conduction. Heat loss from the flame kernel is comparable to the net ignition energy for the small electrodes after 3 milliseconds while that for the large electrodes is shown to equal the net ignition energy within 800 microseconds. The experiments show that electrode configuration is an important factor affecting kernel development during the ignition period.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Theoretical Investigation of Advanced Capillary Structures in Grooved Heat Pipe Evaporators for Space Applications

2000-01-2319

View Details

TECHNICAL PAPER

Improved Engine Wall Models for Large Eddy Simulation (LES)

2013-01-1097

View Details

TECHNICAL PAPER

Unsteady Heat Transfer in Engines

610041

View Details

X