1987-02-01

Evaluation of the Fuel Economy Potential of the Low-Heat-Rejection Diesel Engine for Passenger-Car Application 870024

Elimination of the conventional cooling system of a diesel engine and the incorporation of structural ceramics for the combustion chamber continues to receive attention worldwide. Application of this concept for a light-duty diesel engine installed in an intermediate-size passenger car is analyzed by computer simulation. The fuel economy of a water-cooled turbocharged DI diesel engine installed in a vehicle is compared to the fuel economy of low-heat-rejection (LHR) turbocharged and turbocompounded DI diesel engines. Appropriate consideration is given for the differences in loading imposed by the vehicle with displacement scaled for equal vehicle acceleration performance. On a combined EPA fuel economy basis, the LHR turbocharged engine is estimated to give 6% better fuel economy and the LHR turbocompounded engine is estimated to give 13% better fuel economy in the LHR vehicle in comparison to the water-cooled turbocharged engine in the baseline vehicle. Given consideration of emissions, driveability, and realistic power turbine efficiencies, achievable fuel-economy gains are expected to be somewhat less.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Response of Diesel Combustion Systems to Increase of Fuel Injection Rate

790037

View Details

TECHNICAL PAPER

Model Verification of the Evaporating Diesel Spray Distribution in the Combustion Chamber of a D.I. Diesel Engine

962054

View Details

TECHNICAL PAPER

Mixing Enhancement by a Bump Ring in a Combustion Chamber for Compound Combustion

2005-01-3721

View Details

X