1986-03-01

Heat Radiation in D.I. Diesel Engines 860445

A new model for radiation heat transfer in DI diesel engines has been developed. The model calculates the heat transfer rates as a function of the instantaneous values of the radiation zone size, radiation temperature, and of the absorption coefficient of the soot-laden gas. The soot concentration levels are calculated from kinetic expressions for soot formation and burnup. The spatial distribution of the radiant heat flux along the combustion chamber walls is calculated by a zonal model. The model has been applied to a conventional heavy duty highway DI diesel engine to generate predictions over a range of engine speeds and loads. These predictions indicated a wide variation in the ratio of radiation to the total heat transfer, ranging from less than ten percent to more than thirty percent, depending on the speed and load. Simulations were also made of the same engine lined with ceramic materials, for which the predicted ratio of radiation to the total heat transfer was found to be substantially increased.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

A Time-Dependent Spatial Model for Radiant Heat Transfer in Diesel Engines

831725

View Details

JOURNAL ARTICLE

Unregulated Harmful Substances in Exhaust Gas from Diesel Engines

2009-01-1870

View Details

TECHNICAL PAPER

Quantitative Spatially Resolved Measurements of Total Radiation in High-Pressure Spray Flames

2014-01-1252

View Details

X