1985-02-25

Evaluation of an Air-Gap-Insulated Piston in a Divided-Chamber Diesel Engine 850359

An air-gap-insulated piston designed for reduced heat loss was evaluated by examining its influence on the coolant heat rejection, engine performance and exhaust emissions of a single-cylinder divided-chamber diesel engine. At 1000 and 1500 r/min engine speed, use of the low-heat-rejection (LHR) piston resulted in a reduction in total coolant heat rejection ranging from 3% at light load to 5-7% at full load, in a general reduction in hydrocarbons, carbon monoxide and smoke emissions, in an increase in oxides of nitrogen, and in a significant improvement in brake specific fuel consumption only at light loads. It was estimated that the LHR piston design reduced the piston-crown surface heat transfer by an amount equivalent to from 3.5% (full load) to 5.5% (light load) of the input fuel energy at 1000 r/min.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
X