1984-10-01

The Prediction of Auto Ignition in a Spark-Ignited Engine 841337

A constant volume combustion simulation has been used to compute the ignition delays of pure fuels and binary fuel mixtures in air. Minima in the ignition delays were predicted by a comprehensive chemical kinetic mechanism for binary fuel mixtures with methane. A model has been developed to predict the occurrence of autoignition in a spark ignited engine. Experimental pressure data from a CFR engine were used in the model to simulate the temperature-pressure history of the end gas and to determine the time when autoignition occurred. Comprehensive chemical kinetic mechanisms were used to predict the reactions in the end gas. Methanol, methane, ethane, ethylene, propane and n-butane were used as fuels. The initial temperatures in the model were adjusted to give agreement between predicted and observed autoignition. Engine data for methane-ethane mixtures indicated a problem with the kinetic mechanism.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

The Autoignition of Isobutane in a Knocking Spark Ignition Engine

870169

View Details

TECHNICAL PAPER

Diethyl Ether (DEE) as a Renewable Diesel Fuel

972978

View Details

TECHNICAL PAPER

Performance and Emissions Characteristics of a Spark Ignition Engine Fueled with Dissociated and Steam-Reformed Methanol

852106

View Details

X