Browse Publications Technical Papers 2023-01-1208
2023-06-26

A Fast and Reliable CFD Approach to Design Hydrogen SI Engines for Industrial Applications 2023-01-1208

SI engines fueled with hydrogen represent a promising powertrain solution to meet the ambitious target of carbon-free emissions at the tailpipe. Therefore, fast and reliable numerical tools can significantly support the automotive industry in the optimization of such technology. In this work, a 1D-3D methodology is presented to simulate in detail the combustion process with minimal computational effort. First, a 1D analysis of the complete engine cycle is carried out on the user-defined powertrain configuration. The purpose is to achieve reliable boundary conditions for the combustion chamber, based on realistic engine parameters. Then, a 3D simulation of the power-cycle is performed to mimic the combustion process. The flow velocity and turbulence distributions are initialized without the need of simulating the gas exchange process, according to a validated technique. However, coupled 1D-3D simulations of the engine scavenging can be carried out as well to increase the accuracy of the predicted intake valve closing (IVC) flow fields. The proposed methodology was validated against experimental measurements from a pent-roof single-cylinder spark-ignition (SI) engine, in which different values of hydrogen-air dilution were investigated. The achieved results were able to capture the measured pressure and heat release trends, demonstrating the industrial applicability of the presented methodology.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
X