Browse Publications Technical Papers 2021-01-0523
2021-04-06

A Computational Investigation of Fuel Enrichment in the Pre-Chamber on the Ignition of the Main Chamber Charge 2021-01-0523

Pre-chamber combustion (PCC) engines allow extending the lean limit of operation compared to common SI engines, thus being a candidate concept for the future clean transportation targets. To understand the fundamental mechanisms of the main chamber charge ignition in PCC engines, the effects of the composition in the pre-chamber were investigated numerically. A well-stirred reactor combustion model coupled with a methane oxidation mechanism reduced from GRI 3.0 was used. An open-cycle simulation was run with initialization at exhaust valve opening (EVO). For posterior simulations, the initial flow field was attained by mapping the field variables obtained from the full cycle simulation. The entire simulation domain (pre-chamber and main chamber) global excess air ratio (λ) was set to 1.3. As parametric variants, additional amounts of fuel were further injected into the pre-chamber to achieve a global pre-chamber λ of 0.7 and 1.0 at spark timing, thus having the pre-chamber and the main chamber with different compositions (emulating an active type pre-chamber). For the same operating conditions, the pre-chamber charge residence time after the spark ignition is mostly governed by the geometry. Therefore, by varying the air/fuel ratio (AFR) in the pre-chamber, it is possible to produce jets with various compositions and ultimately determine the impact of the pre-chamber enrichment on the main chamber response. The results show that the pre-chamber is sensitive to fuel enrichment and the results serve as a baseline guideline for subsequent studies.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Investigation of H2 Formation Characterization and its Contribution to Post- Oxidation Phenomenon in a Turbocharged DISI Engine

2020-01-2188

View Details

TECHNICAL PAPER

Investigation of Flame Detachment Effect during Early Flame Development in a Swirl Flow Field

2021-01-0482

View Details

TECHNICAL PAPER

The Effect of Homogeneous Lean Combustion on Efficiency and Emissions Trends in Natural Gas-Fueled Small Engines

2021-01-0652

View Details

X