Browse Publications Technical Papers 2021-01-0488
2021-04-06

Fuel Effects on the Propensity to Establish Propagating Flames at SPI-Relevant Engine Conditions 2021-01-0488

In order to further understand the sequence of events leading to stochastic preignition in a spark-ignition engine, a methodology previously developed by the authors was used to evaluate the propensity of a wide range of fuels to establishing propagating flames under conditions representative of those at which stochastic preignition (SPI) occurs. The fuel matrix included single component hydrocarbons, binary mixtures, and real fuel blends.
The propensity of each fuel to establish a flame was correlated to multiple fuel properties and shown to exhibit consistent blending behaviors. No single parameter strongly predicted a fuel’s propensity to establish a flame, while multiple reactivity-based parameters exhibited moderate correlation. A two-stage model of the flame establishment process was developed to interpret and explain these results. In short, the fuel-air mixture must locally reach a chemical run-away ignition temperature and then the fuel-air mixture outside of this zone must sustain a propagating flame. This model explains why various fuel properties affect the overall flame establishment propensity of a given fuel.
The data of this study, and the understanding it has generated, helps elucidate the role of fuels on the flame establishment process under elevated pressure and temperature conditions, and ultimately aids in the understanding of the stochastic preignition problem.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
JOURNAL ARTICLE

Ultra-Lean Pre-Chamber Gasoline Engine for Future Hybrid Powertrains

2019-24-0104

View Details

TECHNICAL PAPER

The Squish-Jet Combustion Chamber for Ultra-Lean Burn Natural Gas Engines

2011-24-0112

View Details

TECHNICAL PAPER

A PC-Based Fuel and Ignition Control System Used to Map the 3-D Surfaces of Torque and Emissions Versus Air-Fuel Ratio and Ignition Timing

940546

View Details

X