Browse Publications Technical Papers 2021-01-0414
2021-04-06

Prediction of Engine-Out Emissions Using Deep Convolutional Neural Networks 2021-01-0414

Analysis-driven pre-calibration of a modern automotive engine is extremely valuable in significantly reducing hardware investments and accelerating engine designs compliant with stricter emission regulations. Advanced modelling tools, such as a Virtual Engine Model (VEM) using Computational Fluid Dynamics (CFD), are often used within the framework of a Design of Experiments for Powertrain Engineering (DEPE) with the goal of streamlining significant portions of the calibration process. The success of the methodology largely relies on the accuracy of analytical predictions, especially engine-out emissions. Results show excellent agreements in engine performance parameters (with R2 > 98%) and good agreements in NOx and combustion noise (with R2 > 87%), while the Carbon Monoxide (CO), Unburned Hydrocarbons (HC) and Smoke emissions predictions remain a challenge even with a large n-heptane mechanism consisting of 144 species and 900 reactions and refined mesh resolution. In this study, a Machine Learning (ML) approach is presented to correlate in-cylinder images of Equivalence Ratio, Temperature, Velocity field and Turbulent Kinetic Energy (TKE) at Exhaust Valve Opening (EVO) to engine-out emissions of CO, HC and Smoke measured experimentally. The images generated from CFD simulations and experimentally measured emissions data were used to train a deep Convolutional Neural Network (CNN) based on the VGG16 architecture. The prediction performance of the trained model was evaluated on held-out data. The deep learning model led to a significant improvement in prediction of all emissions species and captured the qualitative trends as well. This model could be used as an emissions prediction sub-model in the Virtual Engine Model framework leading to significantly lower computational costs by avoiding the use of expensive chemistry solvers. Gradient-weighted Regression Activation Mapping (Grad-RAMS) was used to draw insights into image features that had a strong influence on the emissions predictions.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
TECHNICAL PAPER

The Application of Artificial Neural Network in Predicting and Optimizing Power and Emissions in a Compressed Natural Gas Direct Injection Engine

2007-01-4264

View Details

TECHNICAL PAPER

Deep Optimization of Catalyst Layer Composition via Data-Driven Machine Learning Approach

2020-01-0859

View Details

TECHNICAL PAPER

The Development of Artificial Neural Network for Prediction of Performance and Emissions in a Compressed Natural Gas Engine with Direct Injection System

2007-01-4101

View Details

X