Browse Publications Technical Papers 2021-01-0365
2021-04-06

Designing a Production-Ready Ultra-Lightweight Carbon Fiber Reinforced Thermoplastic Composites Door 2021-01-0365

Vehicle lightweighting has been a constant theme of research at numerous Original Equipment Manufacturers (OEM’s) as it provides one of the best opportunities for improving fuel efficiency. In this regard, the Department of Energy (DOE) Vehicle Technology Office set a challenge to lightweight a fully assembled driver’s side front door by at least 42.5% with the cost constraint of a maximum $5 increase for every pound saved. A baseline door of an OEM’s 2014 mid-size SUV was selected, and an integrated design, analysis, and optimization approach was implemented to meet this goal. The ultra-lightweight door design had to meet or exceed the fit & function and mechanical performance (static and dynamic) of the baseline door while being suitable for mass production. The design strategy involved parts consolidation, and multi-material distribution to enable mass reduction without compromising the fit and functional requirements. The primary structural component of this ultra-lightweight door design is a composite inner-frame made of a woven carbon/Nylon-6 composite material. While a finite element composite optimization technique was implemented to design the ultra-lightweight door that met the static and dynamic performance targets, it lacked manufacturing inputs. This study focuses on the feasibility of large-scale manufacturing of the composite inner-frame using thermoforming processes. One benefit of employing these processes is that the existing OEM stamping lines can be utilized with minor modifications with no additional capital cost for equipment. The scope of this paper is to identify the challenges in thermoforming of the thermoplastic door - including shear angle, tearing, and wrinkle formation - using draping simulation and share the solution in the form of countermeasures in the part design and tool concept to make the manufacturing of the final part feasible.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
TECHNICAL PAPER

Passenger Car Door Closing Effort Prediction Using Virtual Simulation and Validation

2021-01-0333

View Details

TECHNICAL PAPER

Analysis of Discretization for Transient Impact Loads on Door Closing

2021-01-0799

View Details

JOURNAL ARTICLE

Electrical Heated Epoxy Tool for Rotational Moulding Application

2020-01-0234

View Details

X