Browse Publications Technical Papers 2020-01-5025
2020-02-24

Model Predictive Automatic Lane Change Control for Intelligent Vehicles 2020-01-5025

As a basic link of driving behavior in urban roads, vehicle lane changing has a significant impact on traffic flow characteristics and traffic safety, and the automation of lane change is also a key issue to be solved in the field of intelligent driving. In this paper, the research on the automatic lane change control for intelligent vehicles is carried out. The main work is to build the overall structure of the vehicle's automatic lane change behavior, of which the planning and tracking are focused. The strategy of Constant Time Headway (CTH) is used in the lane change decision. The lane change trajectory adopts the model of constant velocity offset plus sine function, and the longitudinal displacement is determined by the vehicle speed when changing lanes. Model Predictive Control (MPC) theory is used to track the trajectory, which optimizes tracking accuracy and vehicle stability and constrains the range and rate of change of vehicle speed and steering angle. By using weighted quadratic cost function, linearity matrix inequality constraints and upper and lower bound constraints, the multi-objective trajectory tracking problem is eventually transformed into a constrained online convex quadratic programming problem. The results of simulation and HIL test show that the scheme of automatic lane change can make the vehicle smoothly complete the lane changing behavior, and the errors can meet the error requirements of lane change. Compared with other controller, the method shows smaller lateral acceleration, stronger robustness and higher control precision during the test. Moreover, the computational time of the proposed MPC controller, implemented using the PXI, is 47.994ms during one sampling period, which can satisfy the real-time requirement.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

An Internet-Based System Architecture for Collaborative Product Development

2006-01-0364

View Details

TECHNICAL PAPER

An Online Coverage Path Planning Method for Sweeper Trucks in Dynamic Environments

2021-01-0095

View Details

TECHNICAL PAPER

Urban Pilot Motion Planning and Control Deployment Via Real-Time Multi-Core Multi-Thread Prototyping

2020-01-0125

View Details

X