Browse Publications Technical Papers 2020-01-2258
2020-09-15

Using Deep Reinforcement Learning for Hybrid Electric Vehicle Energy Management under Consideration of Dynamic Emission Models 2020-01-2258

Hybrid electric vehicles (HEV) contribute to reduce emissions from transportation. The energy management controls the powertrain components in HEVs. In addition to minimizing fuel consumption, improving air quality is a major opportunity for hybrid vehicles. Pollutant emissions can only be mapped with sufficient accuracy using dynamic models. The introduced nitrogen oxide model is created using a supervised learning approach based on recorded measurement data. This dynamic model requires input data from previous time steps to ensure sufficient model quality. Classical algorithms such as Dynamic Programming are not able to find solutions for such high-dimensional problems in reasonable computing times. A promising approach to solve the resulting problem is Deep Reinforcement Learning (Deep RL), which has recently been introduced in the field of HEV energy management. Due to the significantly shorter computing times of the Deep RL it is possible to train the energy management with extensive stochastic driving cycles and additionally to consider other relevant system variables such as battery temperature or battery derating. Since the use of the dynamic emission model involves the violation of the Markov condition, the contribution shows an approach to solve the emerging Partially Observable Markov Decision Process (POMDP) using a DDPG agent. The paper thus presents a new multi-criteria optimization algorithm for the design of a diesel hybrid energy management observing fuel consumption and nitrogen oxide emissions. The results show a great potential concerning the reduction of the regarded exhaust gas components in real traffic situations.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

The Technological Opportunities of Hybrid Electric Vehicles

961717

View Details

TECHNICAL PAPER

Emissions Modeling of Heavy-Duty Conventional and Hybrid Electric Vehicles

2001-01-3675

View Details

TECHNICAL PAPER

Achieving High Engine Efficiency for Heavy-Duty Diesel Engines by Waste Heat Recovery Using Supercritical Organic-Fluid Rankine Cycle

2006-01-3522

View Details

X