Browse Publications Technical Papers 2020-01-2053
2020-09-15

Knock Mitigation Effectiveness of EGR across the Pressure-Temperature Domain 2020-01-2053

Exhaust gas recirculation (EGR) has been shown to enable efficiency improvements in SI engines through multiple different mechanisms, including decreasing the knock propensity at high load, which allows higher compression ratio. While many of the benefits of EGR are applicable to both low and high power density engines, including reductions in pumping work and improved specific heat ratio, the knock benefits and corresponding compression ratio increases have been limited to low power density naturally aspirated engines primarily intended for hybrid vehicle architectures. An earlier study [1] indicated that there may be a kinetic limitation for the ability of EGR to mitigate knock under these conditions, but that study only considered a small number of conditions. This investigation expands on that study while also providing data for model validation for the new light-duty combustion consortium from the U.S. Department of Energy: Partnership for Advancing Combustion Engines (PACE). In this investigation, the effectiveness of EGR to mitigate knock is studied with regards to the effect of engine speed (1,500 and 3,000 rpm), changing trajectory in the pressure-temperature domain by varying the intake manifold temperature (35, 60, and 90 deg C), and by considering the effect of minor species by studying the effect of untreated EGR vs. EGR that has been treated by an automotive three-way catalyst. Additionally, to increase the relevance of these data for future modeling studies, the performance of the full boiling range gasoline was compared relative to a surrogate formulation. The study found that the fuel surrogate performs well, confirmed the kinetic limitations of EGR to mitigate knock under boost, and showed improvements in EGR performance with catalyzed EGR.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
TECHNICAL PAPER

Neural Model for Real-Time Engine Volumetric Efficiency Estimation

2013-24-0132

View Details

JOURNAL ARTICLE

LP EGR and IGR Compromise on a GDI Engine at Middle Load

2013-01-0256

View Details

TECHNICAL PAPER

A Semi-Empirical Model of Fuel Transport in Intake Manifolds of SI Engines and Its Application in Transient Conditions

1999-01-1314

View Details

X