Browse Publications Technical Papers 2020-01-1299
2020-04-14

Thermal Behavior of an Electronics Compartment with Respect to Real Driving Conditions 2020-01-1299

The reliability of electronic components is of increasing importance for further progress towards automated driving. Thermal aging processes such as electromigration is one factor that can negatively affect the reliability of electronics. The resulting failures depend on the thermal load of the components within the vehicle lifetime - called temperature collective - which is described by the temperature frequency distribution of the components. At present, endurance testing data are used to examine the temperature collective for electronic components in the late development stage. The use of numerical simulation tools within Vehicle Thermal Management (VTM) enables lifetime thermal prediction in the early development stage, but also represents challenges for the current VTM processes [1, 2]. Due to the changing focus from the underhood to numerous electronic compartments in vehicles, the number of simulation models has steadily increased. Standard load cases such as “Slow Uphill Drive” cannot be applied to these models. The definition of new load cases for maximum and lifetime temperatures requires comprehensive analysis of specific compartment boundary conditions. This publication focuses on a specific compartment in the trunk of a Mercedes Benz S-Class. The impacts of environmental and HVAC conditions on the temperature of the electronic components are shown by wind tunnel tests. A numerical Design of Experiments (DoE) is used to determine individual boundary condition effects, such as ambient temperature or the mass flow rate through the compartment. A vehicle endurance test provides an overview of the lifetime temperatures and the corresponding boundary conditions for the electronic components in this compartment. The results show that the boundary conditions are mainly dependent on the ambient temperature.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Development of the Defrost Performance Evaluation Technology in Automotive Using Design Optimization Analysis Method

2020-01-0155

View Details

TECHNICAL PAPER

Iterative Study to Improve Air Flow Distribution on Ventilation Unit Duct Using CFD Analysis

2020-28-0030

View Details

TECHNICAL PAPER

Thermal Modeling of an Automotive HVAC Unit Using a Coupled POD and Flow Resistance Network Approach

2018-01-0068

View Details

X